Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Геометрия.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
759.01 Кб
Скачать

Билет №1

  1. Свойства равнобедренного треугольника, теорема о свойстве медианы, проведённой к основанию (равнобедренный треугольник)

  1. углы при основании равны.

  2. медиана, опущенная к основанию, является биссектрисой и высотой.

Доказательство:

Пусть АВС - данный равнобедренный треугольник, АC - его основание, а BM – медиана, опущенная к нему.

Треугольники BAM и BCM равны по третьему признаку (3 стороны). Из равенства треугольников следует равенство углов. Угол ABM равен углу CBM, и угол AMB равен углу CMB. Так как углы ABM и CBM равны, то BM – Биссектриса. Так как углы AMB и CMB смежны и равны, то они прямые, значит, BM – Высота.

Теорема доказана.

  1. Зависимость между стороной правильного многоугольника и радиусом описанной и вписанной окружности. Установление зависимости для квадрата, правильного треугольника и шестиугольника.

Квадрат

Равносторонний (правильный) треугольник:

Правильный шестиугольник:

Билет №2

  1. Признаки равенства треугольников (доказательство всех)

  1. по двум сторонам и углу между ними

Доказательство:

Пусть у треугольников АВС и А1В1С1 угол A равен углу А1, АВ равно А1В1, АС равно А1С1. Докажем, что треугольники равны.

Наложим треугольник ABC (либо симметричный ему) на треугольник A1B1C1 так, чтобы угол A совместился с углом A1. Так как АВ=А1В1, а АС=А1С1, то B совпадёт с В1, а C совпадёт с С1. Значит, треугольник А1В1С1 совпадает с треугольником АВС, а следовательно, равен треугольнику АВС.

Теорема доказана.

  1. п о стороне и прилежащим к ней углам

Доказательство:

Пусть АВС и А1В1С1 – два треугольника, у которых АВ равно А1В1, угол А равен углу А1, и угол В равен углу В1. Докажем, что они равны.

Наложим треугольник ABC (либо симметричный ему) на треугольник A1B1C1 так, чтобы AB совпало с A1B1. Так как ∠ВАС =∠В1А1С1 и ∠АВС=∠А1В1С1, то луч АС совпадёт с А1С1, а ВС совпадёт с В1С1. Отсюда следует, что вершина C совпадёт с С1. Значит, треугольник А1В1С1 совпадает с треугольником АВС, а следовательно, равен треугольнику АВС.

Теорема доказана.

  1. по трём сторонам

Д оказательство:

Рассмотрим треугольники ABC и AlBlC1, у которых АВ=А1В1, BC = BlC1 СА=С1А1. Докажем, что ΔАВС =ΔA1B1C1.

Приложим треугольник ABC (либо симметричный ему) к треугольнику A1B1C1 так, чтобы вершина А совместилась с вершиной A1, вершина В — с вершиной В1, а вершины С и С1, оказались по разные стороны от прямой А1В1. Рассмотрим 3 случая:

  1. Луч С1С про­ходит внутри угла А1С1В1. Так как по условию теоремы стороны АС и A1C1, ВС и В1С1 равны, то треугольники A1C1C и В1С1С — равнобедренные. По теореме о свойстве углов равнобедренного треугольника ∠1 = ∠2, ∠3 = ∠4, поэтому ∠ACB=∠A1C1B1.

  2. Луч С1С совпадает с одной из сторон этого угла. A лежит на CC1. AC=A1C1, BC=B1C1, ∆C1BC – равнобедренный, ∠ACB=∠A1C1B1.

  3. Луч C1C проходит вне угла А1С1В1. AC=A1C1, BC=B1C1, значит, ∠1 = ∠2, ∠1+∠3 = ∠2+∠4, ∠ACB=∠A1C1B1.

Итак, AC=A1C1, BC=B1C1, ∠C=∠C1. Следовательно, треугольники ABC и A1B1C1 равны по первому признаку равенства треугольников.

Т еорема доказана.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]