
- •Г.М. Казаков Тепломассообмен
- •Isbn 5-87941-412-4
- •Введение
- •1. Основные положения учения о процессах переноса тепловой энергии и массы в пространстве
- •1.1. Основные понятия и определения
- •1.2. Поле потенциала. Градиент потенциала
- •1.3. Законы Фурье, Фика, Ома и Ньютона
- •2. Основные уравнения тепломассообмена
- •2.1. Дифференциальное уравнение сохранения массы
- •2.2. Дифференциальное уравнение сохранения энергии
- •2.3. Дифференциальные уравнения движения жидкости
- •3. Теплопроводность при стационарном режиме
- •3.1. Дифференциальное уравнение теплопроводности
- •3.2. Краевые условия для процессов теплопроводности
- •3.3. Стационарная теплопроводность через плоскую стенку
- •3.4. Стационарная теплопередача через плоскую стенку
- •3.5. Стационарная теплопроводность через цилиндрическую стенку
- •3.6. Стационарная теплопередача через цилиндрическую стенку
- •3.7. Критический диаметр тепловой изоляции труб
- •3.8. Теплопередача и теплопроводность тел с внутренними источниками тепла
- •3.9. Теплопередача через ребристую стенку
- •3.10. Температурное поле и коэффициент эффективности ребра постоянного поперечного сечения
- •4. Нестационарная теплопроводность
- •4.1. Общие положения
- •4.2. Охлаждение (нагревание) неограниченной пластины
- •4.3. Регулярный режим
- •5. Конвективный теплообмен
- •5.1. Основные понятия и определения
- •5.2. Гидродинамический и тепловой пограничные слои
- •5.3. Подобие и моделирование процессов конвективного теплообмена
- •5.4. Теплоотдача при свободном движении жидкости
- •5.5. Теплоотдача при вынужденном движении жидкости в трубах и каналах
- •5.6. Теплоотдача при внешнем обтекании тел
- •6. Тепломассообмен при фазовых превращениях
- •6.1. Общие положения и определения
- •6.2. Теплоотдача при кипении однокомпонентных жидкостей
- •6.3. Теплоотдача при конденсации пара
- •7. Теплообмен излучением
- •7.1. Основные понятия и определения
- •7.2. Основные законы лучистого теплообмена
- •7.3. Лучистый теплообмен между твердыми телами
- •7.4. Теплообмен при излучении и поглощении газов
- •8. Теплообменные аппараты
- •8.1. Основные понятия и определения
- •8.2. Основные виды теплообменных аппаратов
- •8.3. Тепловой расчет рекуперативного теплообменного аппарата
- •8.3. Гидравлический расчет теплообменника
- •Литература
- •Содержание
1.3. Законы Фурье, Фика, Ома и Ньютона
Эти законы можно выразить общей формулировкой: плотность потока любой субстанции, переносимой микроскопическим способом, прямо пропорциональна градиенту соответствующего потенциала.
По закону Фурье плотность потока тепла, переносимого теплопровод-ностью, прямо пропорциональна градиенту температуры
,
(1.9)
где – коэффициент теплопроводности, вт/мград.
Знак минус в правой части равенства необходим, так как вектора градиент температуры и плотность теплового потока лежат на одной прямой, если скалярная величина, но направлены в разные стороны. Коэффициент теплопроводности изменяется для известных материалов в диапазоне от 10-3до102 вт/мград. Вещества, у которых 0,25 вт/мград, называют теплоизоляторами. У анизотропных тел коэффициент теплопроводности по разным направлениям оказывается разным, в отличие от изотропных тел, и вектора плотности потока тепла и градиента температуры не лежат на одной прямой. В общем случае коэффициент теплопроводности зависит от темпера-туры. У чистых металлов (кроме алюминия) с ростом температуры коэффи-циент теплопроводности уменьшается. У газов, наоборот, возрастает. Для большинства капельных жидкостей, исключая воду в диапазоне температур от 0 до 150оС, с ростом температуры коэффициент теплопроводности умень-шается. Чем больше компонентов входит в смесь, тем меньше ее коэффициент теплопроводности. В отличие от теплоемкости смеси, коэффициент ее теплопроводности не обладает свойством суммируемости (аддитивности) в соответствии, например, с массовыми долями компонентов, входящими в смесь. Для влажного материала коэффициент теплопроводности выше, чем коэффициент теплопроводности сухого материала и воды. По закону Фика плотность потока массы отдельного компонента смеси, переносимого молекулярной диффузией, прямо пропорциональна градиенту концентрации этого компонента
,
(1.10)
где Di – коэффициент диффузии i-того компонента смеси, м2/с.
Для обычных газовых смесей при атмосферном давлении коэффициенты диффузии имеют значения от 0,110-4 до 10-4 м2/с и уменьшаются с увеличением давления смеси. У капельных жидкостей коэффициенты диффузии меньше, чем у газов, и имеют значения от 0,510-4 до 210-9 м2/с. В отличие от газов, коэффициенты диффузии в жидкостях часто существенно изменяются с концентрацией. Коэффициенты диффузии в твердых телах изменяются в диапазоне от 10-6 до 210-14 м2/с. С ростом температуры коэффициенты диффузии увеличиваются.
По закону Ома плотность электрического тока прямо пропорциональна градиенту электрического потенциала
,
где – коэффициент электропроводности, Ом-1м-1.
Для различных материалов коэффициент электропроводности изменяется в диапазоне от 6107 до10-16 Ом-1м-1.
По закону Ньютона плотность потока количества движения, переносимого микроскопическим способом, прямо пропорциональна градиенту скорости
,
где – коэффициент динамической вязкости, нсек/м2.
Плотность потока количества движения в общем случае трехмерного движения – тензорная величина, поэтому рассмотрим более простое одномерное поле скоростей течения жидкости
Тогда по закону Ньютона касательное напряжение трения (или плотность потока количества движения, переносимого микроскопическим способом) прямо пропорционально градиенту скорости
.
(1.11)
Таким образом, причиной внутреннего трения при движении вязкой жидкости является перенос количества движения микрочастицами в неоднородном поле скоростей. Даже при малом коэффициенте динамической вязкости , например у газов, в случае больших градиентов скорости силы вязкого трения будут значительными. У капельных жидкостей коэффициент динамической вязкости резко уменьшается с ростом температуры, а у газов несколько возрастает.
Необходимо отметить, что перечисленные выше законы переноса различных субстанций, в отличие от законов сохранения самих субстанций, например энергии, могут нарушаться при очень больших градиентах соответствующих потенциалов. В чистом виде эти законы выполняются при неоднородности тех потенциалов, которые входят в соответствующий закон. При этом другие потенциалы в изучаемой области однородны.
Если, например, в неподвижной двухкомпонентной смеси имеют место неоднородности концентраций i-го компонента, неоднородности температуры и давления, то наряду с концентрационной диффузией, описываемой законом Фика, возникнут термическая диффузия (эффект Соре) и бародиффузия. Суммарная плотность потока массы i-го компонента смеси с учетом концентрационной диффузии, термо- и бародиффузии составит
(1.12)
где – плотность смеси;
mi = Ci / – относительная массовая концентрация i-того компонента;
DT = KTDi – коэффициент термодиффузии;
Dp = KpDi – коэффициент бародиффузии;
p – давление смеси;
KT, Kp – коэффициенты.
Доля массы i-го компонента в общем потоке, переносимого термодиффузией, незначительна, и только при больших градиентах температур ощущается ее влияние. Бародиффузия проявляется при значительных перепадах давления. В процессах теплообмена такие случаи встречаются редко.
Аналогично при микроскопическом способе переноса тепла в смеси, когда не однородны температура, концентрация компонентов смеси и давление, суммарная плотность потока тепла с учетом теплопроводности, определяемой законом Фурье, диффузионной теплопроводностью (эффект Дюфо) и переноса тепловой энергии за счет диффузии составит
(1.13)
где
– плотность потока диффузионной
теплопроводности;
hi – удельная энтальпия i-го компонента смеси;
– суммарная
плотность потока массы i-го
компонента смеси.
Диффузионная теплопроводность для многокомпонентной смеси исследована мало; кроме того, ее величина в общем потоке незначительна, поэтому ею часто пренебрегают. Последнее слагаемое в правой части (1.13), связанное с переносом энтальпии в результате диффузии, обычно мало, и его следует учитывать при высоких температурах в случаях существенной диссоциации газов. Поля потенциалов, в частности, поле скоростей жидкости, определяются из дифференциальных уравнений сохранения субстанций.