
- •Г.М. Казаков Тепломассообмен
- •Isbn 5-87941-412-4
- •Введение
- •1. Основные положения учения о процессах переноса тепловой энергии и массы в пространстве
- •1.1. Основные понятия и определения
- •1.2. Поле потенциала. Градиент потенциала
- •1.3. Законы Фурье, Фика, Ома и Ньютона
- •2. Основные уравнения тепломассообмена
- •2.1. Дифференциальное уравнение сохранения массы
- •2.2. Дифференциальное уравнение сохранения энергии
- •2.3. Дифференциальные уравнения движения жидкости
- •3. Теплопроводность при стационарном режиме
- •3.1. Дифференциальное уравнение теплопроводности
- •3.2. Краевые условия для процессов теплопроводности
- •3.3. Стационарная теплопроводность через плоскую стенку
- •3.4. Стационарная теплопередача через плоскую стенку
- •3.5. Стационарная теплопроводность через цилиндрическую стенку
- •3.6. Стационарная теплопередача через цилиндрическую стенку
- •3.7. Критический диаметр тепловой изоляции труб
- •3.8. Теплопередача и теплопроводность тел с внутренними источниками тепла
- •3.9. Теплопередача через ребристую стенку
- •3.10. Температурное поле и коэффициент эффективности ребра постоянного поперечного сечения
- •4. Нестационарная теплопроводность
- •4.1. Общие положения
- •4.2. Охлаждение (нагревание) неограниченной пластины
- •4.3. Регулярный режим
- •5. Конвективный теплообмен
- •5.1. Основные понятия и определения
- •5.2. Гидродинамический и тепловой пограничные слои
- •5.3. Подобие и моделирование процессов конвективного теплообмена
- •5.4. Теплоотдача при свободном движении жидкости
- •5.5. Теплоотдача при вынужденном движении жидкости в трубах и каналах
- •5.6. Теплоотдача при внешнем обтекании тел
- •6. Тепломассообмен при фазовых превращениях
- •6.1. Общие положения и определения
- •6.2. Теплоотдача при кипении однокомпонентных жидкостей
- •6.3. Теплоотдача при конденсации пара
- •7. Теплообмен излучением
- •7.1. Основные понятия и определения
- •7.2. Основные законы лучистого теплообмена
- •7.3. Лучистый теплообмен между твердыми телами
- •7.4. Теплообмен при излучении и поглощении газов
- •8. Теплообменные аппараты
- •8.1. Основные понятия и определения
- •8.2. Основные виды теплообменных аппаратов
- •8.3. Тепловой расчет рекуперативного теплообменного аппарата
- •8.3. Гидравлический расчет теплообменника
- •Литература
- •Содержание
4.3. Регулярный режим
Как показано выше, начиная с некоторого момента времени 1 охлаждения пластины, начальные условия начинают играть второстепенную роль. Процесс полностью определяется только условиями охлаждения на границе пластины и среды, физическими свойствами материала тела и его геометрической формой и размерами. Математически это означает, что температурное поле в пластине описывается первым членом ряда (4.5)
(4.12)
В этом уравнении А1-постоянный коэффициент, не зависящий ни от координат, ни от времени, так как 1 определяется из соотношения (4.6). Множитель Un является функцией только координаты х. Для тел других геометрических форм температурное поле в стадии регулярного режима также будет описываться уравнением вида (4.12). Специфика геометрической формы учитывается различным видом множителей А1 и U1. Логарифмируя последнее уравнение и опуская индексы, получим
.
(4.13)
После дифференцирования обеих частей уравнения (4.13) имеем
(4.14)
Величина m называется темпом охлаждения. При наступлении регулярного режима темп охлаждения не зависит ни от координат, ни от времени и является величиной постоянной для любой точки тела. Если экспериментально определить изменение избыточной температуры во времени и построить зависимость в полулогарифмических координатах, то темп охлаждения в стадии регулярного режима найдется как
(4.15)
Зависимость темпа охлаждения от физических свойств материала тела, его геометрической формы и размеров, а также условий теплообмена на поверхности тела можно найти из теплового баланса. При отводе от тела объемом V тепла dQ изменение энтальпии тела составит
,
(4.16)
где
– средняя по объему избыточная
температура.
За тот же промежуток времени эта теплота должна быть отведена с поверхности тела в окружающую среду за счет теплоотдачи
.
(4.17)
Приравнивая выражения (4.16) и (4.17), получим
.
(4.18)
Из этого уравнения
следует, что относительная скорость
охлаждения или темп охлаждения тела
при конечном значении коэффициента
теплоотдачи прямо пропорциональна
коэффициенту теплоотдачи, поверхности
тела и обратно пропорциональна его
теплоемкости (первая теорема Кондратьева
[1]). В этом уравнении множитель
называется коэффициентом неравномерности
распределения температуры в теле. При
Bi0
(практически при Bi0,1)
=1.
При Bi
(практически при Bi100)
=0.
При Bi, или, что то же, , темп охлаждения становится прямо пропорциональным коэффициенту температуропроводности материала тела (вторая теорема Кондратьева [1]).
.
(4.19)
Коэффициент пропорциональности К зависит от геометрической формы и размеров тела. Докажем это на примере охлаждения пластины. Напомним, что из соотношения (4.12) следует
,
при Bi имеем ctg 0, а стремится к своему предельному значению /2. С учетом этого коэффициент пропорциональности для пластины равен
;
для шара
;
для параллелепипеда
;
для цилиндра конечной длины
.
На основе теории регулярного режима разработаны различные экспериментальные методы определения теплофизических свойств разных материалов. При определении этих свойств поступают следующим образом. Для определения коэффициента температуропроводности используют a-калориметр, имеющий форму цилиндра или шара. Создают условия охлаждения, близкие к , измеряют изменение избыточной температуры во времени и строят зависимость в полулогарифмических координатах. По соотношению (4.15) определяют темп охлаждения, а по формуле (4.19) рассчитывают коэффициент температуропроводности.