
- •Глава 1. Кристаллическое строение металлов
- •Глава 2 механические свойства металлов
- •2.1. Статические испытания
- •2.1.1.Испытания на растяжение.
- •2.2. Динамические испытания
- •2.2.1. Испытание на удар, Ударная вязкость и порог хладноломкости
- •2.2.2. Циклические испытания металлов. Кривая усталости. Предел выносливости.
- •2.2.3. Определение твёрдости
- •Глава 3. Пластическая деформация
- •3.1. Пластическая деформация. Влияние пластической деформации на свойства сталей. Явление наклёпа. Влияние наклёпа на структуру и свойства металлов. Механизмы пластической деформации.
- •3.2. Назначение рекристаллизационного отжига. Первичная и собирательная рекристаллизация. Понятие о критической степени деформации.
- •3.3. Холодная и горячая пластическая деформация.
- •Глава 4. Теория металлических сплавов
- •4.1. Основные понятия теории сплавов.
- •4.1.1. Компонент, фаза, чистые химические элементы.
- •4.1.2.Твёрдые растворы, виды твёрдых растворов. Условия образования твёрдых растворов.
- •4.1.3. Химические соединения.
- •4.2. Диаграммы фазового равновесия (диаграммы состояния)
- •4.2.1. Диаграмма состояния сплавов с неограниченной растворимостью компонентов в твёрдом состоянии
- •4.2.2. Диаграмма состояния сплавов с ограниченной растворимостью и эвтектикой
- •4.3. Связь диаграмм состояния со свойствами сплавов
- •Глава 5 железо и сплавы на его основе
- •5.1. Компоненты и фазы в системе Fe-c
- •5.2. Диаграмма состояния железо-цементит
- •5.3. Структуры железоуглеродистых сплавов в равновесном состоянии
- •5.4. Серые чугуны
- •5.5. Влияние углерода и постоянных примесей на свойства стали
- •Глава 6. Теория термической обработки
- •Глава 6 теория термической обработки
- •6.1.Превращение перлита в аустенит при нагреве
- •6.2. Превращения переохлаждённого аустенита
- •6.2.1. Диаграмма изотермического распада переохлаждённого аустенита
- •6.2.2. Перлитное превращение
- •6.2.3. Мартенситное превращение
- •6.2.4. Промежуточное (бейнитное) превращение
- •6.2.5. Превращения аустенита при непрерывном охлаждении
- •6.2.6. Влияние легирующих элементов на распад аустенита
- •Превращения мартенсита при нагреве (при отпуске)
- •Глава 7. Практика термической обработки стали
- •7.1 Отжиг
- •7.2. Нормализация
- •7.2.1. Классификация сталей по структуре в нормализованном состоянии
- •7.3. Закалка
- •7.4. Отпуск стали
- •7.4.1. Отпускная хрупкость
- •7.5. Закаливаемость и прокаливаемость стали
- •7.6. Способы поверхностного упрочнения сталей
- •7.6.1. Поверхностная закалка стали с индукционным нагревом (закалка твч)
- •7.6.2. Цементация
- •7.6.3. Азотирование
- •8.2.4. Инструментальные стали:
- •8.3. Конструкционные стали общего назначения
- •Цементуемые стали
- •Улучшаемые стали – среднеуглеродистые,
- •Рессорно-пружинные стали
- •8.4. Конструкционные стали специального назначения
- •8.4.1. Износостойкие стали
- •8.4.2. Стали, устойчивые против коррозии
- •8.4.2.1. Жаростойкие стали
- •8.4.2.2. Коррозионно-стойкие (нержавеющие) стали
- •8.4.3. Жаропрочные стали
- •8.4.3.1. Стали перлитного класса
- •8.4.3.2. Стали мартенситного (мартенситно-ферритного) класса:
- •8.5. Инструментальные стали
- •8.5.1. Стали для режущих инструментов
- •8.5.1.1. Углеродистые стали: у7…у13 (у8а…у13а).
- •8.5.1.3. Быстрорежущие стали
- •8.5.2. Стали для измерительных инструментов
- •8.5.3. Стали для штампов
- •9. Сплавы цветных металлов
- •9.1. Алюминий и его сплавы
- •9.1.1. Деформируемые алюминиевые сплавы, не упрочняемые термообработкой
- •9.1.2. Деформируемые алюминиевые сплавы, упрочняемые термообработкой
- •9.2. Медь и ее сплавы
- •9.2.1. Латуни
- •9.2.2. Бронзы
- •9.2.2.1. Оловянные бронзы
- •Бериллиевую бронзу
- •9.3. Подшипниковые сплавы
- •9.4. Титан и его сплавы
- •Пластмассы
- •9.2. Полимерные структуры Наполнители
- •9.3. Клеи
- •9.4. Герметизирующие материалы
- •9.5. Лакокрасочные материалы
Рессорно-пружинные стали
– высокоуглеродистые, содержат 0,5…0,8%С. Применяются для пружин, рессор и других упругих элементов.
Термообработка: закалка + средний отпуск. Структура - троостит отпуска. Свойства: высокие пределы упругости, текучести и выносливости. Рессорно-пружинные стали должны иметь высокую прокаливаемость, пластичность, вязкость, релаксационную стойкость.
Углеродистые стали: 55, 60, 65, 70, 75, 80, 85. Применяются для пружин малого сечения (до 10 мм), эти стали имеют низкую релаксационную стойкость.
Легированные стали. Основными легирующими элементами в рессорно-пружинных сталях являются кремний (1…3% Si), марганец (~1% Мn), хром (~1%Cr), ванадий (~0,15%V), никель (до 1,7%Ni). Их вводят для повышения прокаливаемости, релаксационной стойкости и выносливости.
Кремнистые стали: 55С2, 60С2А, 70С3А применяют для автомобильных рессор, пружин вагонов. Кремний повышает прочность феррита, предел упругости, предел текучести, но способствует обезуглероживанию и графитизации. Эти недостатки устраняют добавками Cr, V, W, Ni: 60С2ХА, 65С2ВА, 60С2Н2А. Такие стали применяют для крупных тяжелонагруженных пружин и рессор.
Стали, не содержащие кремния, применяются для автомобильных рессор (50ХГА), клапанных пружин (50ХФА, 50ХГФА).
Предел выносливости рессор может быть повышен в 1,5…2 раза путем поверхностного пластического деформирования: гидроабразивной или дробеструйной обработкой.
8.4. Конструкционные стали специального назначения
8.4.1. Износостойкие стали
Шарикоподшипниковые стали применяются для подшипников качения (шарики, ролики, кольца). Они содержат в среднем 1% углерода, стали должны иметь высокую твердость, износостойкость, контактную выносливость и сквозную прокаливаемость.
Сталь ШХ15 содержит ~1%С и 1,5%Cr. Термообработка: закалка в масле с температуры 820…850°С + низкий отпуск при 150…170°С. Структура – мартенсит и дисперсные карбиды. Сталь ШХ15СГ дополнительно содержит 0,8%Si и 1,2%Mn для повышения прокаливаемости, и применяется для крупногабаритных подшипников.
Износостойкая аустенитная сталь Гадфильда 110Г13Л содержит 1,1%С, 13%Mn, (Л–литейная). Структура после литья: аустенит легированный + карбиды (Fe,Mn)3С. Для растворения хрупких карбидов и получения однородной аустенитной структуры сталь подвергают закалке в воде от температуры 1100°С.
Сталь обладает высокой износостойкостью в условиях динамического износа, благодаря способности аустенита к деформационному упрочнению (наклепу). При ударных нагрузках в поверхностном слое по границам зерна аустенита выделяются карбиды марганца. Это приводит к обеднению аустенита углеродом и легирующими элементами. В результате температуры МН и МК повышаются, аустенит частично превращается в мартенсит, что повышает твердость и износостойкость.
Применение: траки гусеничных машин, ковши экскаваторов, крестовины железнодорожных путей и т.п.
8.4.2. Стали, устойчивые против коррозии
Коррозия – разрушение металла под действием окружающей среды. По механизму коррозионных процессов различают химическую и электрохимическую коррозию.
Химическая коррозия протекает при воздействии на металлы газов (газовая коррозия) и неэлектролитов. Газовая коррозия заключается в окислении металла, что приводит к постепенному разрушению.
Электрохимическая коррозия происходит под воздействием электролитов: водных растворов кислот, щелочей, солей, морской и речной воды, влажного воздуха (атмосферная коррозия), почвы и т.д.
Механизм электрохимической коррозии заключается в следующем: при соприкосновении металлов в среде электролита образуется гальваническая пара, в которой металл с более электроотрицательным электродным потенциалом (анод), отдавая электроны, разрушается. В сплавах и даже в чистых металлах между различными фазами могут возникать микрогальванические пары, где роль анода играют границы зерен и дефектные участки.