
- •Предмет физиологии растений и основные направления исследований
- •Методы физиологии растений
- •Задачи физиологии растений
- •Краткая история физиологии растений
- •1. Природа и функции основных химических компонентов растительной клетки
- •Элементарный состав растений
- •Углеводы
- •Растительные пигменты
- •Фитогормоны
- •Фитонциды
- •Фитоалексины
- •2. Особенности структурной организации растительной клетки
- •Клеточная оболочка
- •Вакуоль
- •Пластиды
- •3. Органы, ткани и функциональные системы высших растений
- •1. Регуляция активности ферментов
- •2. Генетическая система регуляции
- •3. Мембранная регуляция
- •4. Трофическая регуляция
- •5. Электрофизиологическая регуляция
- •6. Гормональная система регуляции
- •Ауксины
- •Цитокинины
- •Гиббереллины
- •Абсцизины
- •Брассиностероиды
- •1. Термодинамические основы водного обмена растений
- •2. Водный баланс растений.
- •Поглощение и передвижение воды.
- •Транспирация.
- •Физиология устьичных движений
- •Пути снижения интенсивности транспирации
- •1. История фотосинтеза
- •2. Лист как орган фотосинтеза
- •3. Хлоропласты и фотосинтетические пигменты
- •Пигменты хлоропластов
- •Хлорофиллы
- •Каротиноиды
- •4. Световая фаза фотосинтеза
- •Организация и функционирование пигментных систем
- •5. Темновая фаза фотосинтеза
- •Фотодыхание
- •1. Сапротрофы
- •2. Паразиты
- •3. Насекомоядные растения
- •Гликолитическое расщепление глюкозы
- •Гликолиз
- •Цикл Кребса
- •Электрон-транспортная цепь
- •Окислительное фосфорилирование
- •Энергетический выход гликолитического дыхания
- •2. Пентозофосфатное расщепление глюкозы
- •4 Рибулозофосфат 2 рибулозофосфат
- •3. Промежуточные продукты дыхания
- •4. Жиры и белки как дыхательный субстрат
- •1. Элементы‚ необходимые для растительного организма
- •2. Признаки голодания растений
- •3. Антагонизм ионов
- •4. Поглощение минеральных веществ
- •5. Ионный транспорт в растении
- •Радиальное перемещение ионов в корне
- •Восходящий транспорт ионов в растении
- •Поглощение ионов клетками листа
- •Отток ионов из листьев
- •6. Азотное питание растений
- •Ассимиляция нитратного азота
- •Ассимиляция аммиака
- •Накопление нитратов в растениях
- •1. Клеточные основы роста и развития
- •2. Закон большого периода роста
- •3. Гормональная регуляция роста и развития растений
- •Влияние фитогормонов на рост и морфогенез растений
- •Использование фитогормонов и физиологически активных веществ
- •4. Физиология покоя семян
- •5. Процессы, протекающие при прорастании семян
- •6. Покой растений
- •7. Физиология старения растений
- •8.Осенняя окраска листьев и листопад
- •9. Влияние абиотических факторов на рост и развитие растений Температура
- •10. Влияние микроорганизмов на рост растений
- •11. Движения растений
- •Фототропизмы
- •Геотропизмы
- •Другие виды тропизмов
- •1. Холодостойкость растений
- •2. Морозоустойчивость растений
- •3. Зимостойкость растений
- •4. Влияние на растения избытка влаги в почве
- •5. Засухоустойчивость растений
- •Влияние на растения недостатка влаги
- •Физиологические особенности засухоустойчивости
- •6. Жароустойчивость растений
- •7. Солеустойчивость растений
- •1. Основные термины и понятия
- •2. Методы переноса генетической информации Трансформация растений Тi-плазмидой
- •Векторные системы на основе Тi-плазмид
- •Физические методы переноса генов в растительные клетки
- •Бомбардировка микрочастицами
- •3. Получение трансгенных растений
- •Выведение растений, устойчивых к насекомым-вредителям, вирусам и гербицидам
- •Получение растений, противостоящих неблагоприятным воздействиям и старению
- •Изменение окраски цветков
- •Изменение пищевой ценности растений
- •Растения как биореакторы
Физические методы переноса генов в растительные клетки
Системы переноса генов с помощью Agrobacterium tumefaciens эффективно работают только в случае некоторых видов растений. В частности, однодольные растения, включая основные зерновые культуры (рис, пшеницу и кукурузу), практически не трансформируются Agrobacterium tumefaciens. Тем не менее, модифицировав методики и тщательно контролируя условия, удалось трансформировать кукурузу и рис агробактериями Agrobacterium tumefaciens несущими векторы — производные Тi-плазмид.
Среди методов переноса генов можно назвать следующие: использование Тi-плазмид‚ бомбардировка микрочастицами‚ использование векторов на основе вирусов‚ микроиньекция‚ электропорация (увеличение проницаемости мембран под действием электрического тока)‚ слияние липосом и др. Некоторые методы требуют удаления клеточной стенки с образованием протопластов. Последние поддерживают в культуре как независимо растущие клетки или в специальной питательной среде, где они образуют клеточные стенки; из таких клеток может быть регенерировано целое растение. Кроме того, разработаны методы трансформации, позволяющие вводить клонированный ген в небольшое число клеток растительной ткани, из которой можно регенерировать целое растение, обходясь без регенерации из протопластов. В настоящее время для доставки ДНК в клетки растений предпочитают использовать либо векторы на основе Тi-плазмид, либо бомбардировку микрочастицами.
Бомбардировка микрочастицами
Бомбардировка микрочастицами, или биолистика, — наиболее многообещающий метод введения ДНК в растительные клетки. Золотые или вольфрамовые сферические частицы диаметром 0,4—1,2 мкм покрывают ДНК, осажденной СаСl2‚ спермидином или полиэтиленгликолем, и «выстреливают» ими в клетки из специального «ружья»‚ приводимого в действие газами, образующимися при сгорании пороха, сжатым воздухом или гелием. Частицы разгоняются до скорости 300—600 м/с и пробивают клеточную стенку и мембраны растительной клетки. При этом их плотность такова, что клетки практически не повреждаются.
Попав в клетку, ДНК, покрывающая частицы, каким -то неизвестным способом интегрируется в растительную ДНК. Метод бомбардировки микрочастицами позволяет трансформировать растения самых разных видов, в том числе однодольные и хвойные, в которые не удается ввести ДНК с помощью Agrobacterium.
Бомбардировку микрочастицами можно использовать также для введения чужеродной ДНК в суспензию растительных клеток, культуры клеток, меристематические ткани, незрелые зародыши, колеоптили и пыльцу широкого круга растений. Кроме того, с помощью этого метода были транспортированы гены в хлоропласты и митохондрии.
Получение трансгенных растений, не содержащих маркерных генов
Обычно при введении чужеродного гена в растение одновременно вводится и селективный маркерный ген. Хотя до сих пор не было никаких указаний на то, что какой-либо из этих генов оказывает неблагоприятное воздействие на человека, животных или окружающую среду, последствия, к которым в принципе может привести включение в растения селективных маркерных генов, вызвали беспокойство общественности. Например, продукты некоторых маркерных генов могут оказаться аллергенами или токсичными веществами, а гены устойчивости к антибиотикам могут попасть в патогенные почвенные микроорганизмы. Кроме того, присутствие селективных маркеров технически затрудняет трансформацию трансгенных растений дополнительными генами, поскольку один селективный маркер не может использоваться дважды. Чтобы успокоить общественность, были разработаны методы получения трансгенных растений без каких-либо маркерных генов.
Один из экспериментальных подходов к получению безмаркерных трансгенных растений включает котрансформацию растений двумя разными ДНК, одна из которых несет маркерный ген, а другая — интересующий исследователя чужеродный ген. В этом случае от 30 до 80% растений содержат оба гена, которые, однако, интегрированы в разные сайты хромосомной ДНК. После отбора трансформантов маркерный ген можно удалить из трансгенного растения с помощью обычного скрещивания.