
- •Предмет физиологии растений и основные направления исследований
- •Методы физиологии растений
- •Задачи физиологии растений
- •Краткая история физиологии растений
- •1. Природа и функции основных химических компонентов растительной клетки
- •Элементарный состав растений
- •Углеводы
- •Растительные пигменты
- •Фитогормоны
- •Фитонциды
- •Фитоалексины
- •2. Особенности структурной организации растительной клетки
- •Клеточная оболочка
- •Вакуоль
- •Пластиды
- •3. Органы, ткани и функциональные системы высших растений
- •1. Регуляция активности ферментов
- •2. Генетическая система регуляции
- •3. Мембранная регуляция
- •4. Трофическая регуляция
- •5. Электрофизиологическая регуляция
- •6. Гормональная система регуляции
- •Ауксины
- •Цитокинины
- •Гиббереллины
- •Абсцизины
- •Брассиностероиды
- •1. Термодинамические основы водного обмена растений
- •2. Водный баланс растений.
- •Поглощение и передвижение воды.
- •Транспирация.
- •Физиология устьичных движений
- •Пути снижения интенсивности транспирации
- •1. История фотосинтеза
- •2. Лист как орган фотосинтеза
- •3. Хлоропласты и фотосинтетические пигменты
- •Пигменты хлоропластов
- •Хлорофиллы
- •Каротиноиды
- •4. Световая фаза фотосинтеза
- •Организация и функционирование пигментных систем
- •5. Темновая фаза фотосинтеза
- •Фотодыхание
- •1. Сапротрофы
- •2. Паразиты
- •3. Насекомоядные растения
- •Гликолитическое расщепление глюкозы
- •Гликолиз
- •Цикл Кребса
- •Электрон-транспортная цепь
- •Окислительное фосфорилирование
- •Энергетический выход гликолитического дыхания
- •2. Пентозофосфатное расщепление глюкозы
- •4 Рибулозофосфат 2 рибулозофосфат
- •3. Промежуточные продукты дыхания
- •4. Жиры и белки как дыхательный субстрат
- •1. Элементы‚ необходимые для растительного организма
- •2. Признаки голодания растений
- •3. Антагонизм ионов
- •4. Поглощение минеральных веществ
- •5. Ионный транспорт в растении
- •Радиальное перемещение ионов в корне
- •Восходящий транспорт ионов в растении
- •Поглощение ионов клетками листа
- •Отток ионов из листьев
- •6. Азотное питание растений
- •Ассимиляция нитратного азота
- •Ассимиляция аммиака
- •Накопление нитратов в растениях
- •1. Клеточные основы роста и развития
- •2. Закон большого периода роста
- •3. Гормональная регуляция роста и развития растений
- •Влияние фитогормонов на рост и морфогенез растений
- •Использование фитогормонов и физиологически активных веществ
- •4. Физиология покоя семян
- •5. Процессы, протекающие при прорастании семян
- •6. Покой растений
- •7. Физиология старения растений
- •8.Осенняя окраска листьев и листопад
- •9. Влияние абиотических факторов на рост и развитие растений Температура
- •10. Влияние микроорганизмов на рост растений
- •11. Движения растений
- •Фототропизмы
- •Геотропизмы
- •Другие виды тропизмов
- •1. Холодостойкость растений
- •2. Морозоустойчивость растений
- •3. Зимостойкость растений
- •4. Влияние на растения избытка влаги в почве
- •5. Засухоустойчивость растений
- •Влияние на растения недостатка влаги
- •Физиологические особенности засухоустойчивости
- •6. Жароустойчивость растений
- •7. Солеустойчивость растений
- •1. Основные термины и понятия
- •2. Методы переноса генетической информации Трансформация растений Тi-плазмидой
- •Векторные системы на основе Тi-плазмид
- •Физические методы переноса генов в растительные клетки
- •Бомбардировка микрочастицами
- •3. Получение трансгенных растений
- •Выведение растений, устойчивых к насекомым-вредителям, вирусам и гербицидам
- •Получение растений, противостоящих неблагоприятным воздействиям и старению
- •Изменение окраски цветков
- •Изменение пищевой ценности растений
- •Растения как биореакторы
Векторные системы на основе Тi-плазмид
Самый простой способ использования природной способности Тi-плазмид к генетической трансформации растений предполагает встраивание интересующей исследователя нуклеотидной последовательности в Т-ДНК, а затем использование Тi-плазмид и Agrobacterium tumefaciens для доставки и встраивания клонированного гена (генов) в геном компетентной растительной клетки. Однако, несмотря на то‚ что Тi-плазмиды являются эффективными природными векторами, имеется ряд серьезных ограничений на их использование в качестве векторов для клонирования.
- Фитогормоны, синтезируемые трансформированными клетками в культуре, подавляют регенерацию из этих клеток зрелого растения, поэтому при конструировании векторов на основе Тi-плазмиды гены ауксина и цитокинина должны быть удалены.
- Ген опина несуществен для трансгенных растений, но при его наличии может снижаться конечный выход биомассы, поскольку часть ресурсов расходуется на синтез опина. Следовательно, при создании векторов ген опина также должен быть удален.
- Тi-плазмиды имеют очень большой размер (от 200 до 800 т. п. н.), а для экспериментов с рекомбинантными ДНК нужны векторы меньшего размера, поэтому участки ДНК, несущественные для клонирующего вектора, должны быть удалены.
- Тi-плазмиды не реплицируются в Еscherichia coli, что исключает работу с рекомбинантными Тi-плазмидами в этих бактериях. Следовательно, при конструировании векторов на основе Тi-плазмид необходимо ввести в них сайт инициации репликации, обеспечивающий их поддержание в Еscherichia coli.
Несмотря на все эти сложности, было сконструировано несколько векторов для растительных клеток. Все векторы на основе Тi-плазмид организованы сходным образом и имеют следующие элементы.
- Селективный маркерный ген, например ген неомицинфосфотрансферазы, который обеспечивает устойчивость трансформированных растительных клеток к канамицину (антибиотику). Поскольку этот ген (как и многие другие маркерные гены, используемые при трансформации растений) по своей природе прокариотический, необходимо поставить его под контроль растительных (эукариотических) сигналов регуляции транскрипции, в том числе промотора и сигнала терминации-полиаденилирования. Это обеспечит эффективную экспрессию гена в трансформированных растительных клетках.
- Сайт инициации репликации, который позволяет плазмиде реплицироваться в Еscherichia coli. Некоторые векторы содержат также и сайт инициации репликации Agrobacterium tumefaciens.
- Правая фланкирующая последовательность Т-ДНК. Этот элемент абсолютно необходим для интеграции Т-ДНК в клеточную ДНК растений. Большинство же векторов содержат как правую, так и левую фланкирующие последовательности.
- Полилинкер (множественный сайт клонирования) для встраивания гена в участок между границами Т-ДНК.
Поскольку клонирующие векторы не содержат генов vir, они сами не способны обеспечивать транспорт и интеграцию Т-ДНК в клетки растения-хозяина. Чтобы решить эту проблему, было разработаны определенные подходы. Например‚ бинарная векторная система – двухплазмидная система Agrobacterium‚ предназначенная для переноса участка Т-ДНК‚ несущего клонированные гены‚ в растительные клетки. Гены вирулентности локализованы на одной плазмиде‚ а встроенный участок Т-ДНК – на другой.