
- •Предмет физиологии растений и основные направления исследований
- •Методы физиологии растений
- •Задачи физиологии растений
- •Краткая история физиологии растений
- •1. Природа и функции основных химических компонентов растительной клетки
- •Элементарный состав растений
- •Углеводы
- •Растительные пигменты
- •Фитогормоны
- •Фитонциды
- •Фитоалексины
- •2. Особенности структурной организации растительной клетки
- •Клеточная оболочка
- •Вакуоль
- •Пластиды
- •3. Органы, ткани и функциональные системы высших растений
- •1. Регуляция активности ферментов
- •2. Генетическая система регуляции
- •3. Мембранная регуляция
- •4. Трофическая регуляция
- •5. Электрофизиологическая регуляция
- •6. Гормональная система регуляции
- •Ауксины
- •Цитокинины
- •Гиббереллины
- •Абсцизины
- •Брассиностероиды
- •1. Термодинамические основы водного обмена растений
- •2. Водный баланс растений.
- •Поглощение и передвижение воды.
- •Транспирация.
- •Физиология устьичных движений
- •Пути снижения интенсивности транспирации
- •1. История фотосинтеза
- •2. Лист как орган фотосинтеза
- •3. Хлоропласты и фотосинтетические пигменты
- •Пигменты хлоропластов
- •Хлорофиллы
- •Каротиноиды
- •4. Световая фаза фотосинтеза
- •Организация и функционирование пигментных систем
- •5. Темновая фаза фотосинтеза
- •Фотодыхание
- •1. Сапротрофы
- •2. Паразиты
- •3. Насекомоядные растения
- •Гликолитическое расщепление глюкозы
- •Гликолиз
- •Цикл Кребса
- •Электрон-транспортная цепь
- •Окислительное фосфорилирование
- •Энергетический выход гликолитического дыхания
- •2. Пентозофосфатное расщепление глюкозы
- •4 Рибулозофосфат 2 рибулозофосфат
- •3. Промежуточные продукты дыхания
- •4. Жиры и белки как дыхательный субстрат
- •1. Элементы‚ необходимые для растительного организма
- •2. Признаки голодания растений
- •3. Антагонизм ионов
- •4. Поглощение минеральных веществ
- •5. Ионный транспорт в растении
- •Радиальное перемещение ионов в корне
- •Восходящий транспорт ионов в растении
- •Поглощение ионов клетками листа
- •Отток ионов из листьев
- •6. Азотное питание растений
- •Ассимиляция нитратного азота
- •Ассимиляция аммиака
- •Накопление нитратов в растениях
- •1. Клеточные основы роста и развития
- •2. Закон большого периода роста
- •3. Гормональная регуляция роста и развития растений
- •Влияние фитогормонов на рост и морфогенез растений
- •Использование фитогормонов и физиологически активных веществ
- •4. Физиология покоя семян
- •5. Процессы, протекающие при прорастании семян
- •6. Покой растений
- •7. Физиология старения растений
- •8.Осенняя окраска листьев и листопад
- •9. Влияние абиотических факторов на рост и развитие растений Температура
- •10. Влияние микроорганизмов на рост растений
- •11. Движения растений
- •Фототропизмы
- •Геотропизмы
- •Другие виды тропизмов
- •1. Холодостойкость растений
- •2. Морозоустойчивость растений
- •3. Зимостойкость растений
- •4. Влияние на растения избытка влаги в почве
- •5. Засухоустойчивость растений
- •Влияние на растения недостатка влаги
- •Физиологические особенности засухоустойчивости
- •6. Жароустойчивость растений
- •7. Солеустойчивость растений
- •1. Основные термины и понятия
- •2. Методы переноса генетической информации Трансформация растений Тi-плазмидой
- •Векторные системы на основе Тi-плазмид
- •Физические методы переноса генов в растительные клетки
- •Бомбардировка микрочастицами
- •3. Получение трансгенных растений
- •Выведение растений, устойчивых к насекомым-вредителям, вирусам и гербицидам
- •Получение растений, противостоящих неблагоприятным воздействиям и старению
- •Изменение окраски цветков
- •Изменение пищевой ценности растений
- •Растения как биореакторы
Ассимиляция нитратного азота
Азот входит в состав органических соединений только в восстановленной форме. Поэтому включение нитратов в обмен веществ начинается с их восстановления, которое может осуществляться и в корнях, и в листьях. Относительная доля участия этих органов в первичной ассимиляции нитратов является видовым признаком. В связи с этим выделяют три основные группы растений:
1. Растения, практически полностью восстанавливающие нитраты в корнях и транспортирующие азот к листьям в органической форме. К этой группе относятся горох, люпин, черника‚ многие древесные растения.
2. Растения, практически не проявляющие нитратредуктазной активности в корнях и ассимилирующие подаваемые с пасокой нитраты в листьях. Это бурачник, дурнишник‚ сахарная свекла, хлопчатник.
3. Растения, способные восстанавливать нитраты как в корнях, так и в листьях. Это наиболее многочисленная группа, включающая хлебные злаки: кукурузу, фасоль, сорго, овощные культуры. У них, как правило, восстановление нитратов активнее протекает в листьях, однако доля участия разных органов сильно варьирует в зависимости от обеспеченности растений нитратами, концентрации в среде и интенсивности поглощения ионов аммония и калия, уровня освещенности, температуры и других факторов.
По современным представлениям, восстановление нитрата осуществляется в два этапа.
1. Восстановление нитрата до нитрита, сопряженное с переносом двух электронов и катализируемое ферментом нитратредуктазой (НР):
N
O3-
NO2-
2. Восстановление нитрита до аммиака путем переноса шести электронов и катализируемое ферментом нитритредуктазой (НиР):
N
O2-
NH4+
Нитратредуктаза представляет собой гем- и молибденсодержащий флавопротеин, участвующий в переносе электрона от НАДН к NO3-
Восстановление нитратов до нитритов происходит в цитозоле клеток корня и листа. Не исключается возможность локализации нитратредуктазы на плазмалемме и на мембранах органелл, граничащих с растворимой фазой клетки. Но эти ассоциации фермента с мембранами удерживаются слабыми связями и легко разрушаются при выделении органелл.
Вторая стадия восстановления минерального азота осуществляется при участии фермента нитритредуктазы. Это относительно низкомолекулярный белок, включающий около 600 аминокислотных остатков, который содержит железопорфириновую простетическую группу и железо в виде кластера 4Fe4S.
В листьях нитритредуктаза локализована в хлоропластах и в качестве донора электронов использует восстановленный в световой фазе фотосинтеза ферридоксин (Фд). В корнях NO2- восстанавливается в пропластидах с использованием НАДФН, образующегося в пентозофосфатном пути дыхания.
Использование разных источников восстановителя приводит к существенной разнице в энергозатратах на превращение нитрата в аммоний в надземных и подземных органах. Если привести затраты к одному эквиваленту, то в листьях на восстановление 14 г азота нитрата расходуется 15 г глюкозы, а в корнях — 60 г, т. е. в 4 раза больше. Но преимущества перед корнями в энергетических расходах листья имеют только на свету.