- •Белорусский государственный университет
- •История развития геномных исследований. Геномная революция конца хх века
- •2. Геномные проекты. Иерархический и шот-ган подходы. Фазы геномного проекта.
- •3. Современные методы картирования геномов
- •Библиотеки днк используемые при секвенировании геномов: их разновидности и способы создания.
- •5.Сложности расшифровки генома эукариот и пути их преодоления
- •6. Синтез днк in vitro: компонетны и продукты реакции, свойства днк-полимераз. Способы использования реакции полимеризации днк для определения нуклеотидных последовательностей.
- •7. Секвенирование днк по методу Сэнгера: возможности и ограничения
- •8. Принцип действия, достоинства и недостатки геномных секвенаторов 2 поколения использующих реакцию пиросеквенирования
- •9.Принцип действия, достоинства и недостатки геномных секвенаторов 2 поколения использующих днк полимеразную реакцию (секвенирование путём синтеза illumina)
- •10. Принцип действия, достоинства и недостатки геномных секвенаторов 2 поколения использующих детекцию протонов (ion torrent)
- •11. Принцип действия, достоинства и недостатки геномных секвенаторов 3 поколения
- •12. Аннотация геномных последовательностей: основные задачи и подходы к их решению.
- •13. Молекулярные базы данных. Специализация, структура и методы поиска информации
- •14. Функциональная геномика. Подходы к идентификации генов в геномных последовательностях и определение их функций
- •15. Возможности и ограничения компьютерного анализа при идентификации кодирующих и регуляторных последовательностей, а также для предсказания их возможных функций.
- •16. Транскриптомные и протеомные подходы к идентификации генов в геномных последовательностях и генома.
- •17. Эволюция геномов. Механизмы геномных перестроек, уменьшение и увеличение размеров геномов. Семейства гомологичных генов. Ортологи и паралоги. Псевдогены.
- •18 . Повторяющиеся последовательности в геномах про- и эукариот. Их роль в эволюции генома.
- •19. Классификация, строение, основные свойства и распространение мобильных генетических элементов эукариот.
- •20. Классификация, строение, основные свойства и распространение мобильных генетических элементов прокариот.
- •21. Вклад горизонтального переноса генов в эволюцию геномов про- и эукариот. Острова патогенности. Концепция пангенома.
- •22. Хромосомы про- и эукариот: форма, количество, структурные элементы, обеспечивающие стабильность и репликацию.
- •23. Структура генов у различных организмов: прерывистые и не прерывистые кодирующие последовательности, размеры и расположение регуляторных элементов.
- •24. Организация оперонов у про- и эукариот. Проблема экспрессии внутренних генов оперонов эукариот и молекулярный механизм её решения.
- •25. Концепция минимального генома. Природные минимальные геномы бактерий, архей, эукариот – их размер, число генов и особенности организации.
- •26. Характерные черты геномов прокариот.
- •27. Характерные черты геномов факультативных и облигатных патогенов. Взаимная адаптация геномов патогенна и его хозяина.
- •28. Разнообразие и характерные особенности геномов одноклеточных эукариот
- •29. Основные характеристики геномов грибов
- •30. Организация геномов нематод
- •31. Организация генома Drosophila melanogaster
- •32. Особенности организации геномов позвоночных животных
- •33. Сравнительная характеристика геномов Ноmо sарiепs и Рап troglodytes.
- •34. Отличительные черты геномов растений.
28. Разнообразие и характерные особенности геномов одноклеточных эукариот
В целом, эукариоты очень разнообразны. Большая часть одноклеточных эукариот адекватно описывается таксонами уровня Царства. Есть много одноклеточных водорослей, Хризофитовыые, они идут как класс. Но эти водоросли, хролопласт – пример вторичного эндосимбиоза, этот примитивный эукариотический организм поглотил другой одноклеточный эукариотический организм. Сначала был эукариотический эндосимбиоз одноклеточного эукариотического нефотосинтезирующего организима с одноклеточным эукариотическим фотосинтезирующим организимом, с течение времени шла интенсивная редукция генома эндосимбионта, часть генов мигрировала в геном хозяина, но по крайней мере в некоторых видах сохранилось даже редуцированное ядро эндосимбионта, так называемый, нуклеоморф, часть была нуклеоморфов секвенирована. Оказалось, что это стандартный эукариотический геном, похожий на прокариотический тем, что лишней балластной ДНК нет, гены перекрываются, около 1.5 млн. Существует два нуклеоморфа, различные эндосимбиозы. Плазмодий несёт интересную органеллу – апикопласт, тип Апикомплекса. Апикопласт отвечает за метаболизм различных соединений. Хролопласт Криптофитовых и апикопласт ограничены четырьми мембранами. Одна внешняя клеточная мембрана, вторая мембраны эндосимбиоза и две мембраны хлоропласта. В этом случае протоплазмы эндосимбионта практически не остаётся, даже нуклеоморф где-то сбоку лежит. В апикопласте ядра не сохранилось, однако наличие четырёх мембран подчеркивает происхождение. Если детально исследовать как работают молекулярно-генетические механизмы таких интересных одноклеточных эукариот, тоже много чудес получится. Есть различные водоросли, у которых и нормального митоза нет, например Dinoflagellata, у инфузорий интересно идёт деление.
Дрожжи – удобный модельный объект, это редуцированные аскомицеты. Два наиболее изученных вида дрожжей – Schizosacharomyces pombe и Sacharomyces cerevisiae, оба одноклеточные, имеют похожие геномы, между ними полмиллиарда до миллиарда по различным оценкам лет эволюции. Понятно, что был какой-то общий аскомицетный предок, от которого эти виды произошли. Пример филогенетического древа, эти грибы родственны другим грибам, другие эукариоты довольно обособлены. Основный характеристики геномов на первый взгляд схожи. У Sacharomyces cerevisiae 16 хромосом, у Schizosacharomyces pombe их всего 3. Число генов также существенно различается, первые оценки были существенно больше для обоих видов однако с каждым годом число кодирующих генов уменьшается. Около 5500 для Schizosacharomyces pombe, для Sacharomyces cerevisiae около 5000 генов. Существенные отличия начинаются, если посмотреть, сколько генов с интронами, у Schizosacharomyces pombe стандарный эукариотический геном, значительная часть генов (43%) с интронами, в случае, если интроны есть, он может быть один, может быть много. В случае Sacharomyces cerevisiae по различным оценкам от 3 до 5 % генов с интронами, во всех случаях кодирующая последовательность никогда не прерывается, когда интрон есть он в самом начале 5' некодирующей области располагается. В целом плотность генов от 1 гена на 2,5 тысячи нуклеотидов. Если посмотреть, какой процент генома кодирует белки, то это порядок 60-70 %. Однако помимо генов, кодирующих белки, есть гены тРНК, есть гены рРНК, могут быть локализованы в виде тандемных повторов, могут быть разбросанными по геному, быть локализованными в центромерных и теломерных областях, наконец есть гены малых ядерных РНК, какое-то количество транспозонов. У пивных дрожжей меньше, у хлебных больше, есть также какое-то количество длинных концевых повторов, эта часть транспозонов ретровирусные, в дрожжах очень эффективно идёт гомологичная рекомбинация, поскольку ретротранспозоны ограничены двумя прямыми повторами, рекомбинация между ними выбрасывает центральную часть ретротранспозона, остаётся одиночный повтор, у дрожжей они называются дельта-последовательности. Существенное различие между этими дрожжами состоит в строении их теломерных и центромерных областей. У Sacharomyces cerevisiae достаточно просто устроенная центромера, менее сотни н.п., у пивных дрожжей строение центромеры близко к строению стандартной центромеры эукариот - это несколько десятков тысяч н.п. , в которых есть различные наборы различных повторов, часть из них так и называется – центромерные повторы, которые больше нигде не встречаются, скорее всего именно с этими повторами взаимодействуют белки, отвечающие за формирование веретена деления, присутствуют гены тРНК (показаны на слайде значками) и во многих случаях транспозоны присутствуют, у дрожжей это не характерно, так как их мало в геноме, у других эукариот они присутствуют.
