
- •3. Тангенциальное и нормальное ускорения.
- •5. Понятие состояния в классической механике. Первый закон Ньютона – закон инерции. Инерциальные системы отсчёта.
- •6. Масса и импульс. Сила. Второй закон Ньютона. Уравнение динамики материальной точки.
- •7. Механическая система. Внешние и внутренние силы. Третий закон Ньютона. Центр масс механической системы и закон его движения.
- •8. Момент силы и момент импульса. Уравнение моментов для материальной точки.
- •9. Основное уравнение динамики вращательного движения твёрдого тела вокруг оси. Момент инерции.
- •11. Кинетическая энергия частицы и системы частиц. Связь кинетической энергии системы с работой действующих на неё сил.
- •12. Кинетическая энергия и работа при вращении твёрдого тела.
- •13. Консервативные и неконсервативные силы. Потенциальная энергия частицы и её связь с силой поля.
- •14. Полная механическая энергия и закон её изменения. Закон сохранения механической энергии. Общефизический закон сохранения и превращения энергии.
- •15. Замкнутая система материальных точек. Законы сохранения импульса и момента импульса.
- •16. Механический принцип относительности и преобразования Галилея. Классический закон сложения скоростей.
- •18. Следствия из преобразований Лоренца: замедление хода времени, Лоренцево сокращение длины, релятивистский закон сложения скоростей.
- •19. Пространственно-временной интервал. Инварианты преобразований Лоренца.
- •20. Релятивистское преобразование импульса. Основное уравнение релятивистской динамики.
- •21. Релятивистское преобразование кинетической энергии. Полная энергия и энергия покоя. Выражение полной энергии через импульс. Взаимосвязь массы и энергии покоя.
- •22. Понятие сплошной среды. Общие свойства жидкостей и газов. Идеальная и вязкая жидкость. Уравнение Бернулли. Ламинарное и турбулентное течение жидкости.
- •23. Основы молекулярно-кинетической теории (мкт) идеальных газов. Основное уравнение мкт. Молекулярно-кинетическое истолкование температуры.
- •24. Распределение Максвелла. Скорости теплового движения молекул.
- •25. Барометрическая формула. Распределение Больцмана для частиц во внешнем потенциальном поле.
- •26. Закон равномерного распределения энергии по степеням свободы. Число степеней свободы. Средняя кинетическая энергия теплового движения молекул.
- •27. Обратимые и необратимые процессы. Тепловые машины и их кпд. Цикл Карно. Теоремы Карно.
- •28. Энтропия и её свойства. Второе начало термодинамики.
- •29. Связь энтропии с вероятностью состояния. Статистическое истолкование второго начала термодинамики.
- •30. Явления переноса в термодинамически неравновесных системах. Общая характеристика переноса. Феноменологические уравнения явлений переноса.
- •31. Среднее число столкновений и средняя длина свободного пробега. Молекулярно-кинетическая теория явлений переноса в газах: теплопроводности, вязкого трения, диффузии. Коэффициенты переноса.
- •32. Электростатическое поле, его напряжённость. Напряжённость поля точечного заряда. Принцип суперпозиции.
- •34. Поток вектора напряжённости. Теорема Гаусса и её применение для расчёта напряжённости электростатического поля.
- •35. Работа электростатического поля. Циркуляция вектора напряжённости электростатического поля. Потенциал. Связь потенциала с напряжённостью.
- •36. Типы диэлектриков. Связанные заряды. Поляризованность.
- •37. Теорема Гаусса для электростатического поля в диэлектриках. Вектор электрического смещения d. Диэлектрическая восприимчивость и диэлектрическая проницаемость вещества.
- •38. Распределение заряда на проводнике. Проводник во внешнем электростатическом поле. Электростатическая защита.
- •40. Энергия взаимодействия электрических зарядов. Энергия заряженного проводника и конденсатора.
- •41. Энергия электростатического поля. Объёмная плотность энергии электрического поля.
- •42. Общие характеристики и условия существования электрического тока. Стационарное электрическое поле. Уравнение непрерывности.
- •43. Сторонние силы. Электродвижущая сила источника тока. Обобщённый закон Ома для участка цепи с источником тока.
- •44. Работа и мощность тока. Закон Джоуля-Ленца в дифференциальной форме.
- •45. Магнитное поле. Сила Ампера. Вектор магнитной индукции, силовые линии. Принцип суперпозиции. Закон Био-Савара-Лапласа. Поле прямого и кругового токов.
- •46. Рамка с током в магнитном поле. Магнитный момент. Момент сил, действующий на рамку. Работа перемещения проводника и контура с током в магнитном поле.
- •47. Магнитный поток. Теорема Гаусса для магнитного поля. Работа по перемещению проводника с током в магнитном поле.
- •48. Магнетики. Виды магнетиков. Диамагнетики. Парамагнетики. Ферромагнетики.
- •49. Закон полного тока для магнитного поля в веществе. Напряжённость магнитного поля. Магнитная проницаемость.
- •50. Условия на границе раздела двух магнетиков для векторов b и h.
14. Полная механическая энергия и закон её изменения. Закон сохранения механической энергии. Общефизический закон сохранения и превращения энергии.
•Полной механической энергией системы тел называется сумма кинетической и потенциальной энергий. •Закон сохранения механической энергии утверждает, что если тело или система подвергается действию только консервативных сил, то полная механическая энергия этого тела или системы остаётся постоянной. В изолированной системе, где действуют только консервативные силы, полная механическая энергия сохраняется.
15. Замкнутая система материальных точек. Законы сохранения импульса и момента импульса.
• Замкнутая система тел в механике — совокупность физических тел, у которых взаимодействия с внешними телами отсутствуют. •Закон сохранения импульса: векторная сумма импульсов всех тел системы есть величина постоянная, если векторная сумма внешних сил, действующих на систему, равна нулю. •Закон сохранения момента импульса: момент импульса замкнутой системы тел относительно любой неподвижной точки не изменяется с течением времени.
16. Механический принцип относительности и преобразования Галилея. Классический закон сложения скоростей.
•Согласно
механическому принципу относительности
Галилея законы
динамики одинаковы во всех инерциальных
системах отсчёта. •Преобразование
Галилея это совокупность уравнений
,
,
,
.
•Скорость движения тела относительно
неподвижной системы отсчёта равна
векторной сумме скорости этого тела
относительно подвижной системы отсчёта
и скорости (относительно неподвижной
системы) той точки подвижной системы
отсчёта, в которой находится тело.
17. Постулаты специальной теории относительности (СТО). Относительность понятия одновременности. Преобразования Лоренца.
•Первый постулат (принцип относительности Эйнштейна): Любое физическое явление протекает одинаково во всех инерциальных системах отсчёта. Это означает, что форма зависимости физических законов от пространственно-временных координат должна быть одинаковой во всех ИСО, то есть законы инвариантны относительно переходов между ИСО. Принцип относительности устанавливает равноправие всех ИСО. •Второй постулат (принцип постоянства скорости света). Скорость света в «покоящейся» системе отсчёта не зависит от скорости источника. Скорость света одинакова во всех инерциальных системах.
•Относительность
одновременности: два пространственно
разделённых события, одновременные в
одной ИСО, могут не быть одновременными
в другой ИСО. При переходе из одной СО
в другую может изменяться последовательность
событий во времени, однако последовательность
причинно-следственных событий остаётся
неизменной во всех СО: следствие
наступает после причины. Причиной
относительности одновременности
является конечность скорости
распространения сигналов. •Преобразованиями
Лоренца в физике называются преобразования,
которым подвергаются пространственно-временные
координаты каждого события при переходе
от одной инерциальной системы отсчёта
к другой.
,
,
,