
- •2. Принцип действия транзистора.
- •3. Тринистор.
- •1. Прямое смещение р-n перехода.
- •2. Токи в транзисторе.
- •3. Полевой транзистор с изолированным затвором и индуцированным каналом. Характеристики.
- •1. Обратное смещение р-n перехода.
- •2. Модуляция толщины базы коллекторным напряжением.
- •3. Пленочные интегральные схемы.
- •1. Вольтамперная характеристика р-n перехода.
- •2. Схема включения транзистора с общей базой, параметры.
- •3. Зависимость коэффициента передачи тока транзистора от частоты.
- •1. Емкости р-n перехода.
- •2. Схема дтл - диодно-транзисторной логики.
- •3. Достоинства и недостатки полевых транзисторов. Преимущества и недостатки полевых транзисторов перед биполярными.
- •Главные преимущества полевых транзисторов
- •Главные недостатки полевых транзисторов
- •2. Особенности схемы с общей базой. Достоинства и недостатки.
- •3. Динистор.
- •1) Прямое смещение р-n перехода:
- •2) Схема включения транзистора с общим эмиттером, параметры:
- •3) Разновидности тиристоров.
- •1) Обратное смещение р-n перехода.
- •2) Статические характеристики транзистора с общим эмиттером.
- •3) Источники света. Светодиод.
- •1) Вольтамперная характеристика p-n перехода
- •2) Особенности схемы с общим эмиттером
- •3) Фотоприемники. Фотодиод. Режимы работы фотодиода. Вах.
- •1) Стабилитрон, вах, схема включения.
- •2) Схема включения транзистора с общим коллектором, параметры.
- •3) Фотодиод в генераторном режиме
- •1) Емкости р-n перехода
- •1) Пробой р-n перехода
- •2) Физическая т-образная эквивалентная схема с общим эмиттером
- •3) Классификация интегральных схем
- •Стабилитрон, вах, схема включения.
- •Зависимость коэффициента усиления тока транзистора от частоты.
- •Приборы с зарядовой связью.
- •Варикап.
- •Дрейфовый транзистор.
- •Схемы ттл - транзисторно-транзисторной логики
- •Диод Шоттки.
- •Полевые транзисторы с управляющим р-n переходом.
- •Технология изготовления пленочных ис.
- •Туннельный диод. Обращенный диод.
- •Основные характеристики полевых транзисторов.
- •Изготовление транзисторов и диодов в полупроводниковых ис.
- •23 Билет
- •Отличия вах выпрямительного диода от вах р-п-перехода.
- •Основные параметры полевых транзисторов.
- •Пленочные ис.
- •24 Билет
- •Классификация интегральных схем.
- •Разновидности полевых транзисторов.
- •Принцип действия базовой схемы эсл
- •1. Прямое смещение р-n перехода.
- •2. Схема включения транзистора с общим эмиттером, параметры.
- •3. Разновидности тиристоров.
- •1. Обратное смещение р-n перехода.
- •2. Статические характеристики транзистора с общим эмиттером.
- •3. Источники света. Светодиод.
- •Вольтамперная характеристика р-n перехода.
- •Фотоприемники. Фотодиод. Режимы работы фотодиода. Вах.
- •1. Стабилитрон, вах, схема включения.
- •2. Схема включения транзистора с общим коллектором, параметры
- •3. Фотодиод в генераторном режиме.
- •1. Емкости р-n перехода.
- •3. Оптроны.
- •1. Пробой р-n перехода.
- •2) Физическая т-образная эквивалентная схема с общим эмиттером
- •3. Классификация интегральных схем. Классификация Степень интеграции
- •Технология изготовления
- •Вид обрабатываемого сигнала
- •1. Контакт металл-полупроводник.
- •2. Схема замещения транзистора эквивалентным 4-х полюсником. Связь h-параметров с физическими.
- •3. Пленочные ис. Гибридные ис.
- •1. Выпрямительные диоды.
- •2. Основные характеристики полевых транзисторов.
- •3. Полупроводниковые ис.
- •1. Классификация диодов.
- •2. Зависимость коэффициента усиления тока транзистора от частоты.
- •3. Совмещенные ис.
- •3)Устройства функциональной электроники
- •Стабилитрон, вах, схема включения.
- •Зависимость коэффициента усиления тока транзистора от частоты.
- •3. Приборы с зарядовой связью.
- •Варикап.
- •Схемы ттл - транзисторно-транзисторной логики
- •Полевые транзисторы с управляющим р-n переходом.
- •Технология изготовления пленочных ис.
- •Туннельный диод. Обращенный диод.
- •А) вольт-амперная характеристика при прямом смещении; б) конструкция туннельного диода
- •Изготовление транзисторов и диодов в полупроводниковых ис.
- •Основные параметры полевых транзисторов:
- •3)Пленочные интегральные микросхемы
- •Классификация интегральных схем.
- •Разновидности полевых транзисторов.
- •Транзисторы с управляющим p-n переходом
- •Принцип действия базовой схемы эсл
3. Приборы с зарядовой связью.
ПЗС
используются в быстродействующих
запоминающих устройствах ЭВМ и в
устройствах преобразования оптических
сигналов в электрические. На рис. показана
структура ячейки ПЗС. Э
лементы
памяти, основанные на принципе полевого
транзистора с изолированным затвором
и индуцированным каналом, имеют не один,
а несколько изолированных друг от друга
затворов, расположенных достаточно
близко друг к другу.
При отрицательном напряжении на k - ом затворе ( UЗИ,k < 0) под последним скапливаются дырки, являющиеся неосновными носителями в полупроводнике пластины, а также и дырки, инжектированные истоком (или возникающие в результате генерации пар электрон-дырка при поглощении оптического излучения). Эту совокупность дырок под затвором называют пакетом. При соответствующем изменении напряжений на затворах пакеты перемещаются от истоку к стоку, осуществляя последовательное считывание или параллельную запись информации.
Билет № 44
Варикап.
Варикапы— это полупроводниковые диоды, в которых используется барьерная емкость p-n-перехода. Эта емкость зависит от приложенного к диоду обратного напряжения и с увеличением его уменьшается. Добротность барьерной емкости варикапа может быть достаточно высокой, так как она шунтируется достаточно высоким сопротивлением диода при обратном смещении.
Схематическое изображение варикапа
Вольт-фарадная характеристика варикапа (Рис.) – это основная характеристика данного прибора. График этой характеристики приведён на рис. 8. Из графика следует, что чем больше приложенное к варикапу обратное напряжение, тем меньше ёмкость варикапа.
О
сновные
параметры варикапов:
UОБР –
заданное обратное напряжение
СВ –
номинальная ёмкость, измеренная при
заданном обратном напряжении UОБР
КС –
коэффициент перекрытия ёмкости, который
определяется отношением ёмкостей
варикапа при двух значениях обратного
напряжения
UОБР.МАКС –
максимально допустимое обратное
напряжение
QB –
добротность, определяемая как отношение
реактивного сопротивления варикапа к
сопротивлению потерь
Дрейфовый
транзистор.
Дрейфовый транзистор, транзистор, в котором движение носителей заряда вызывается главным образом дрейфовым полем. Это поле создаётся неравномерным распределением примесей в базовой области прибора. Оно ускоряет движение неосновных носителей заряда к коллектору, повышая коэффициент усиления и предельную рабочую частоту. Метод диффузии имеет несколько модификаций, по наименованию которых и различают типы Д. т.: диффузионно-сплавной, конверсионный, планарный, планарно-эпитаксиальный, меза. Д. т. изготовляют главным образом на основе монокристаллов германия и кремния. Д. т. применяют для усиления и генерирования колебаний с частотами от сотен кгц до нескольких Ггц и коммутации сигналов в электронных устройствах.