
- •2. Принцип действия транзистора.
- •3. Тринистор.
- •1. Прямое смещение р-n перехода.
- •2. Токи в транзисторе.
- •3. Полевой транзистор с изолированным затвором и индуцированным каналом. Характеристики.
- •1. Обратное смещение р-n перехода.
- •2. Модуляция толщины базы коллекторным напряжением.
- •3. Пленочные интегральные схемы.
- •1. Вольтамперная характеристика р-n перехода.
- •2. Схема включения транзистора с общей базой, параметры.
- •3. Зависимость коэффициента передачи тока транзистора от частоты.
- •1. Емкости р-n перехода.
- •2. Схема дтл - диодно-транзисторной логики.
- •3. Достоинства и недостатки полевых транзисторов. Преимущества и недостатки полевых транзисторов перед биполярными.
- •Главные преимущества полевых транзисторов
- •Главные недостатки полевых транзисторов
- •2. Особенности схемы с общей базой. Достоинства и недостатки.
- •3. Динистор.
- •1) Прямое смещение р-n перехода:
- •2) Схема включения транзистора с общим эмиттером, параметры:
- •3) Разновидности тиристоров.
- •1) Обратное смещение р-n перехода.
- •2) Статические характеристики транзистора с общим эмиттером.
- •3) Источники света. Светодиод.
- •1) Вольтамперная характеристика p-n перехода
- •2) Особенности схемы с общим эмиттером
- •3) Фотоприемники. Фотодиод. Режимы работы фотодиода. Вах.
- •1) Стабилитрон, вах, схема включения.
- •2) Схема включения транзистора с общим коллектором, параметры.
- •3) Фотодиод в генераторном режиме
- •1) Емкости р-n перехода
- •1) Пробой р-n перехода
- •2) Физическая т-образная эквивалентная схема с общим эмиттером
- •3) Классификация интегральных схем
- •Стабилитрон, вах, схема включения.
- •Зависимость коэффициента усиления тока транзистора от частоты.
- •Приборы с зарядовой связью.
- •Варикап.
- •Дрейфовый транзистор.
- •Схемы ттл - транзисторно-транзисторной логики
- •Диод Шоттки.
- •Полевые транзисторы с управляющим р-n переходом.
- •Технология изготовления пленочных ис.
- •Туннельный диод. Обращенный диод.
- •Основные характеристики полевых транзисторов.
- •Изготовление транзисторов и диодов в полупроводниковых ис.
- •23 Билет
- •Отличия вах выпрямительного диода от вах р-п-перехода.
- •Основные параметры полевых транзисторов.
- •Пленочные ис.
- •24 Билет
- •Классификация интегральных схем.
- •Разновидности полевых транзисторов.
- •Принцип действия базовой схемы эсл
- •1. Прямое смещение р-n перехода.
- •2. Схема включения транзистора с общим эмиттером, параметры.
- •3. Разновидности тиристоров.
- •1. Обратное смещение р-n перехода.
- •2. Статические характеристики транзистора с общим эмиттером.
- •3. Источники света. Светодиод.
- •Вольтамперная характеристика р-n перехода.
- •Фотоприемники. Фотодиод. Режимы работы фотодиода. Вах.
- •1. Стабилитрон, вах, схема включения.
- •2. Схема включения транзистора с общим коллектором, параметры
- •3. Фотодиод в генераторном режиме.
- •1. Емкости р-n перехода.
- •3. Оптроны.
- •1. Пробой р-n перехода.
- •2) Физическая т-образная эквивалентная схема с общим эмиттером
- •3. Классификация интегральных схем. Классификация Степень интеграции
- •Технология изготовления
- •Вид обрабатываемого сигнала
- •1. Контакт металл-полупроводник.
- •2. Схема замещения транзистора эквивалентным 4-х полюсником. Связь h-параметров с физическими.
- •3. Пленочные ис. Гибридные ис.
- •1. Выпрямительные диоды.
- •2. Основные характеристики полевых транзисторов.
- •3. Полупроводниковые ис.
- •1. Классификация диодов.
- •2. Зависимость коэффициента усиления тока транзистора от частоты.
- •3. Совмещенные ис.
- •3)Устройства функциональной электроники
- •Стабилитрон, вах, схема включения.
- •Зависимость коэффициента усиления тока транзистора от частоты.
- •3. Приборы с зарядовой связью.
- •Варикап.
- •Схемы ттл - транзисторно-транзисторной логики
- •Полевые транзисторы с управляющим р-n переходом.
- •Технология изготовления пленочных ис.
- •Туннельный диод. Обращенный диод.
- •А) вольт-амперная характеристика при прямом смещении; б) конструкция туннельного диода
- •Изготовление транзисторов и диодов в полупроводниковых ис.
- •Основные параметры полевых транзисторов:
- •3)Пленочные интегральные микросхемы
- •Классификация интегральных схем.
- •Разновидности полевых транзисторов.
- •Транзисторы с управляющим p-n переходом
- •Принцип действия базовой схемы эсл
2) Физическая т-образная эквивалентная схема с общим эмиттером
Основные параметры эквивалентной схемы транзистора выражаются через конструктивно-технологические параметры следующим образом:
Величины коэффициентов α, rэ, rк, μэк для биполярного транзистора лежат в пределах:
α = 0,95÷0,995, rэ = 1÷10 Ом, rк = 10÷106 Ом, μэк = 10-3÷10-5.
3. Классификация интегральных схем. Классификация Степень интеграции
В зависимости от степени интеграции применяются следующие названия интегральных схем:
малая интегральная схема (МИС) — до 100 элементов в кристалле,
средняя интегральная схема (СИС) — до 1000 элементов в кристалле,
большая интегральная схема (БИС) — до 10 тыс. элементов в кристалле,
сверхбольшая интегральная схема (СБИС) — более 10 тыс. элементов в кристалле.
Технология изготовления
Полупроводниковая микросхема — все элементы и межэлементные соединения выполнены на одном полупроводниковомкристалле (например, кремния, германия, арсенида галлия, оксид гафния).
Плёночная интегральная микросхема — все элементы и межэлементные соединения выполнены в виде плёнок:
толстоплёночная интегральная схема;
тонкоплёночная интегральная схема.
Гибридная микросхема (также микросборка) — кроме полупроводникового кристалла содержит несколько бескорпусных диодов, транзисторов и(или) других электронных компонентов, помещённых в один корпус.
Смешанная микросхема — кроме полупроводникового кристалла содержит тонкоплёночные (толстоплёночные) пассивные элементы, размещённые на поверхности кристалла.
Вид обрабатываемого сигнала
Аналоговые.
Цифровые.
Аналого-цифровые.
Билет № 37
1. Контакт металл-полупроводник.
КОНТАКТ МЕТАЛЛ – ПОЛУПРОВОДНИК переходная область между приведёнными в соприкосновение металлом и полупроводником, обеспечивающая прохождение электрич. тока между ними. При установлении К. м. - п. вследствие различия в работе выхода электронов контактирующих материалов возникают встречные диффузионные и дрейфовые электронные потоки, выравнивающие Ферми-уровни металла и ПП. В результате вблизи границы металл - ПП образуется двойной электрич. слой пространств. заряда, наз. переходным барьерным слоем, и возникает связанная с ним контактная разность потенциалов. Если в переходном слое К. м. - п. концентрация осн. носителей заряда повышена по сравнению с их концентрацией в ост. объёме ПП (т. н. обогащённый слой), то такие К. м. - п. обеспечивают двустороннюю электрич. проводимость и используются в качестве омических (невьшрямляющих) контактов. Если переходной слой К. м. - п. обеднён осв. носителями заряда, то такой контакт, наз. Шотки-контактом, обладает выпрямляющим действием (см. также р - п-Переход). Шотки-контакты (Au - nSi, Ni - nSi, Pt - nGaAs и др.) используются при создании разл. ПП приборов (импульсных, детекторных, смесительных диодов, фотодиодов, детекторов ядерного излучения, биполярных и полевых транзисторов и т. д.).