
- •2. Принцип действия транзистора.
- •3. Тринистор.
- •1. Прямое смещение р-n перехода.
- •2. Токи в транзисторе.
- •3. Полевой транзистор с изолированным затвором и индуцированным каналом. Характеристики.
- •1. Обратное смещение р-n перехода.
- •2. Модуляция толщины базы коллекторным напряжением.
- •3. Пленочные интегральные схемы.
- •1. Вольтамперная характеристика р-n перехода.
- •2. Схема включения транзистора с общей базой, параметры.
- •3. Зависимость коэффициента передачи тока транзистора от частоты.
- •1. Емкости р-n перехода.
- •2. Схема дтл - диодно-транзисторной логики.
- •3. Достоинства и недостатки полевых транзисторов. Преимущества и недостатки полевых транзисторов перед биполярными.
- •Главные преимущества полевых транзисторов
- •Главные недостатки полевых транзисторов
- •2. Особенности схемы с общей базой. Достоинства и недостатки.
- •3. Динистор.
- •1) Прямое смещение р-n перехода:
- •2) Схема включения транзистора с общим эмиттером, параметры:
- •3) Разновидности тиристоров.
- •1) Обратное смещение р-n перехода.
- •2) Статические характеристики транзистора с общим эмиттером.
- •3) Источники света. Светодиод.
- •1) Вольтамперная характеристика p-n перехода
- •2) Особенности схемы с общим эмиттером
- •3) Фотоприемники. Фотодиод. Режимы работы фотодиода. Вах.
- •1) Стабилитрон, вах, схема включения.
- •2) Схема включения транзистора с общим коллектором, параметры.
- •3) Фотодиод в генераторном режиме
- •1) Емкости р-n перехода
- •1) Пробой р-n перехода
- •2) Физическая т-образная эквивалентная схема с общим эмиттером
- •3) Классификация интегральных схем
- •Стабилитрон, вах, схема включения.
- •Зависимость коэффициента усиления тока транзистора от частоты.
- •Приборы с зарядовой связью.
- •Варикап.
- •Дрейфовый транзистор.
- •Схемы ттл - транзисторно-транзисторной логики
- •Диод Шоттки.
- •Полевые транзисторы с управляющим р-n переходом.
- •Технология изготовления пленочных ис.
- •Туннельный диод. Обращенный диод.
- •Основные характеристики полевых транзисторов.
- •Изготовление транзисторов и диодов в полупроводниковых ис.
- •23 Билет
- •Отличия вах выпрямительного диода от вах р-п-перехода.
- •Основные параметры полевых транзисторов.
- •Пленочные ис.
- •24 Билет
- •Классификация интегральных схем.
- •Разновидности полевых транзисторов.
- •Принцип действия базовой схемы эсл
- •1. Прямое смещение р-n перехода.
- •2. Схема включения транзистора с общим эмиттером, параметры.
- •3. Разновидности тиристоров.
- •1. Обратное смещение р-n перехода.
- •2. Статические характеристики транзистора с общим эмиттером.
- •3. Источники света. Светодиод.
- •Вольтамперная характеристика р-n перехода.
- •Фотоприемники. Фотодиод. Режимы работы фотодиода. Вах.
- •1. Стабилитрон, вах, схема включения.
- •2. Схема включения транзистора с общим коллектором, параметры
- •3. Фотодиод в генераторном режиме.
- •1. Емкости р-n перехода.
- •3. Оптроны.
- •1. Пробой р-n перехода.
- •2) Физическая т-образная эквивалентная схема с общим эмиттером
- •3. Классификация интегральных схем. Классификация Степень интеграции
- •Технология изготовления
- •Вид обрабатываемого сигнала
- •1. Контакт металл-полупроводник.
- •2. Схема замещения транзистора эквивалентным 4-х полюсником. Связь h-параметров с физическими.
- •3. Пленочные ис. Гибридные ис.
- •1. Выпрямительные диоды.
- •2. Основные характеристики полевых транзисторов.
- •3. Полупроводниковые ис.
- •1. Классификация диодов.
- •2. Зависимость коэффициента усиления тока транзистора от частоты.
- •3. Совмещенные ис.
- •3)Устройства функциональной электроники
- •Стабилитрон, вах, схема включения.
- •Зависимость коэффициента усиления тока транзистора от частоты.
- •3. Приборы с зарядовой связью.
- •Варикап.
- •Схемы ттл - транзисторно-транзисторной логики
- •Полевые транзисторы с управляющим р-n переходом.
- •Технология изготовления пленочных ис.
- •Туннельный диод. Обращенный диод.
- •А) вольт-амперная характеристика при прямом смещении; б) конструкция туннельного диода
- •Изготовление транзисторов и диодов в полупроводниковых ис.
- •Основные параметры полевых транзисторов:
- •3)Пленочные интегральные микросхемы
- •Классификация интегральных схем.
- •Разновидности полевых транзисторов.
- •Транзисторы с управляющим p-n переходом
- •Принцип действия базовой схемы эсл
Технология изготовления пленочных ис.
Пленочными микросхемами или тонкопленочными схемами называются схемы, получаемые в результате последовательного изготовления на одной подложке радиокомпонентов и соединительных проводников, представляющих собой пленки из резисторных, диэлектрических, полупроводниковых и других материалов, толщиной от нескольких сотых до десятых долей микрона. Пленочная технология используется для получения всех пассивных радиокомпонентов схемы (резисторов, конденсаторов и др.). Пленочные микросхемы, в которых наряду с пассивными пленочными радиокомпонентами используются навесные (дискретные) активные полупроводниковые приборы, получили название гибридных пленочных микросхем. Такие схемы, как правило, состоят из подложки, рабочих радиокомпонентов, выводов и корпуса.
22-билет
Туннельный диод. Обращенный диод.
Туннельным диодом называют полупроводниковый диод на основе p+-n+ перехода с сильнолегированными областями, на прямом участке вольт-амперной характеристики которого наблюдается n-образная зависимость тока от напряжения.
Обозначение на схемах ВАХ туннельного диода
Обращённый диод — полупроводниковый диод, на свойства которого значительно влияет туннельный эффект в области p-n перехода.[1] В отличие от туннельного диода вольт-амперная характеристика обращённого диода практически не имеет «горба», что обусловлено немного меньшей, чем у туннельного диода, концентрацией примесей в полупроводнике.[2] Из-за неполного легирования обладает значительной температурной зависимостью
Обозначение на схемах. ВАХ обращенного диода
Основные характеристики полевых транзисторов.
Полевой транзистор — полупроводниковый прибор, в котором ток изменяется в результате действия «перпендикулярного» току электрического поля, создаваемого напряжением на затворе.
Протекание в полевом транзисторе рабочего тока обусловлено носителями заряда только одного знака (электронами или дырками), поэтому такие приборы часто включают в более широкий класс униполярных электронных приборов (в отличие от биполярных). По физической структуре и механизму работы полевые транзисторы условно делят на 2 группы. Первую образуют транзисторы с управляющим р-n переходом, или переходом металл — полупроводник (барьер Шоттки), вторую — транзисторы с управлением посредством изолированного электрода (затвора), т. н. транзисторы МДП (металл — диэлектрик — полупроводник).
Изготовление транзисторов и диодов в полупроводниковых ис.
Помимо основного полупроводникового материала, применяемого обычно в виде монокристалла, транзистор содержит в своей конструкции легирующие добавки к основному материалу, металлические выводы, изолирующие элементы, части корпуса (пластиковые или керамические). Иногда употребляются комбинированные наименования, частично описывающие материалы конкретной разновидности (например, «кремний на сапфире» или «металл-окисел-полупроводник»). Однако основными являются транзисторы на основе кремния, германия, арсенида галлия. Другие материалы для транзисторов до недавнего времени не использовались. В настоящее время имеются транзисторы на основе, например, прозрачных полупроводников для использования в матрицах дисплеев. Перспективный материал для транзисторов — полупроводниковые полимеры. Технология изготовления диода может быть основана на любом из описанных выше методов получения р-гс-переходов на кремнии и германии. Однако прибор, обладающий наилучшими усилительными качествами, получается диффузионным способом, с помощью меза-технологии