
- •1.Ботаника – наука о строении, жизни растений и их сообществ (фитоценозов). Краткая история развития ботаники и ее разделы.
- •3.Вещества запаса, основные типы, их локализация и роль в клетке.
- •5.Пластиды, строение и их биологическое значение. Типы пластид.
- •7. Ткани высших растений. Принципы классификации тканей.
- •9. Покровные ткани: эпидерма, пробка, экзодерма. Корка, ее типы.
- •11. Механические ткани: колленхима, склеренхима (волокна и склереиды). Особенности строения и расположения в вегетативных органах растений.
- •13. Ткани поглощения веществ (ризодерма, или эпиблема) и воздухоносные ткани (аэренхима)
- •14.Запасающие и фотосинтезирующие ткани, их особенности и функции. Фотосинтезирующая ткань
- •15. Строение и развитие вегетативных органов. Побег. Удлиненный и укороченные побеги.
- •17. Проросток, его строение.
- •19.Корень его функции и строение.
- •21.Лист, его функции. Морфология и анатомия листовой пластинки покрытосеменных растений.
- •23. Морфологические и анатомические особенности листьев голосеменных растений.
- •25.Анатомия многолетних ветвей и стволов древесных растений.
- •27. Метаморфозы корня. Корнеплоды, особенности морфологического и анатомического строения.Корневые шишки.
- •29. Общие закономерности морфогенеза растений: полярность, симметрия, корреляция, регенерация.
- •31.Высшие споровые растения, общая характеристика. Понятие о спорофите и гаметофите.
- •33. Растения с преобладанием гаметофита в цикле развития: Отдел Моховидные. Общая характеристика. Цикл развития на примере кукушкина льна. Сфагнум.
- •35.Отдел папоротниковидные. Цикл развития мужского папоротника.
- •37. Цветок. Общий план строения и назначения частей цветка. Морфологическре разнообразие цветков. Диаграммы и формулы цветков.
- •39. Соцветия. Цимозные и рацемозные соцветия. Примеры растений.
- •40.Околоцветник. Типы околоцветника. Чашечка. Венчик.
- •41. Андроцей. Развитие и строение тычинки. Микроспорогенез и развитие мужского гаметофита.
- •42.Пестик, строение и функции. Геницей, ее типы. Мегаспорогенез и развитие женского гаметофита покрытосеменных растений.
- •Строение
- •43. Семязачаток. Строение и типы семязачатков покрытосеменных растений.
- •45.Опыление, типы опыления. Самоопыление, или автогамия. Гейтеногамия. Дихогамия: протоандрия и протогиния. Гетеростилия.
- •47. Плод. Морфологическое разнообразие плодов и принципы классификации. Сухие и сочные.
- •49. Семя. Морфологические типы семян. Типы прорастания семян.
- •51. Отдел голосеменные растения. Общая характеристика класса Хвойные, основные хвойные породы.. Значение представителей семейства сосновые в растительных сообществах.
- •53. Основные отличия покрытосеменных голосеменных растений.
- •57. Семейство Крестоцветные (Капустные). Общая характеристика. Культивируемые и сорные представители этого семейства.
- •61. Семейство Лилейные. Общая характеристика. Основные представители и их хозяйственноезначение.
- •63. Экология - как наука о отношениях живых организмов и их сообществ с окружающей средой.
- •64.Экологические факторы: абиотические и биотические. Абиотические факторы
- •65. Климатические факторы: свет, температура. Экологические группы растений по отношению к ним.
- •67. Эдафические (почвенные) факторы. Галофиты (солонцы и солончаки). Песок. Классификация растений по Раункиеру.
- •Фанерофиты[править | править код]
- •Хамефиты[править | править код]
- •Гемикриптофиты[править | править код]
- •Криптофиты[править | править код]
- •Терофиты[править | править код]
5.Пластиды, строение и их биологическое значение. Типы пластид.
От греческого слова - ищменчивый, пластичный.
Пластиды – органоиды, содержащиеся только в растительной клетке. Каждая пластида ограничена двумя элементарными мембранами. Пластиды разнообразны по форме, строению и функциям. В зависимости от окраски, различают три основных типа пластид: хлоропласты – зеленые, хромопласты – желто-оранжевые или красные, лейкопласты – бесцветные.
Пластиды имеют единое происхождение от пропластид меристематических клеток. Возможны взаимные превращения пластид в онтогенезе вида. Обычно в клетке содержится только один из типов пластид.
Хлоропласты широко распространены у низших и высших растений. Зеленая окраска хлоропластов обусловлена присутствием зеленого пигмента – хлорофилла. В хлоропластах при участии солнечной энергии идет фотосинтез – процесс образования органических веществ из воды и углекислого газа.
Кроме хлорофилла в состав хлоропластов входят каротиноиды: каротин – пигмент оранжево-красный; ксантофилл – желтый. В зеленых листьях они маскируются хлорофиллом и становятся заметными при его разрушении (например, осенью или при заболеваниях). Форма относительно постоянна – линзообразная. Чаще всего хлоропласты равномерно располагаются по цитоплазме, но способны к движению. Они меняют своё положение в зависимости от условий освещения так, чтобы наилучшим образом улавливать свет.
Хромопласты – пластиды желтого или красно-оранжевого цвета. Хромопласты встречаются в созревающих плодах (томаты, шиповник, рябина, арбуз), в клетках лепестков (роза, лютик, одуванчик), в корнеплодах (морковь), в осенних листьях.
В отличие от хлоропластов форма хромопластов очень изменчива: глобулярная, фибриллярная, кристаллическая. Например, в плодах рябины хромопласты имеют вытянутую, заостренную, слегка изогнутую форму, в клетках плодов шиповника и перца красного – овальную.
Лейкопласты пигментов не содержат. Это обычно довольно мелкие пластиды. Встречаются в клетках корней, корневищ и клубней, а также в семенах, других органах, скрытых от солнечного света. Лейкопласты не имеют строго определенной формы: они бывают округлые, яйцевидные, веретенообразные, палочковидные, амебовидные, чашевидные и т.д.; причем форма их даже в одной клетке может меняться несколько раз. В клетке они скапливаются вокруг ядра.
Главная функция пластид – синтез органических веществ, благодаря наличию собственных ДНК и РНК и структур белкового синтеза. В пластидах также содержатся пигменты, обусловливающие их цвет. Все виды данных органелл имеют сложное внутреннее строение. Снаружи пластиду покрывают две элементарные мембраны, имеется система внутренних мембран, погруженных в строму или матрикс.
Главная функция пластид – синтез органических веществ, благодаря наличию собственных ДНК и РНК и структур белкового синтеза. В пластидах также содержатся пигменты, обусловливающие их цвет. Все виды данных органелл имеют сложное внутреннее строение. Снаружи пластиду покрывают две элементарные мембраны, имеется система внутренних мембран, погруженных в строму или матрикс.
6.Клеточная стенка, ее биологическое значение. Клеточная стенка (нередко в качестве синонима термина "клеточная стенка" в учебной и научной литературе используется термин "клеточная оболочка".) у растений - это структурное образование, располагающееся по периферии клетки, за пределами плазмалеммы , придающее клетке прочность, сохраняющее ее форму и защищающее протопласт . Клеточная стенка растений противостоит высокому осмотическому давлению большой центральной вакуоли и препятствует разрыву клетки. Кроме того, совокупность прочных клеточных стенок выполняет роль своеобразного внешнего скелета, поддерживающего форму растения и придающего ему механическую прочность. Клеточная стенка, обладая большой прочностью, в то же время способна к росту, и прежде всего к росту растяжением. Клеточная стенка, как правило, прозрачна и хорошо пропускает солнечный свет. Через нее легко проникают вода и низкомолекулярные вещества, но для высокомолекулярных веществ она полностью или частично непроницаема. У многоклеточных организмов стенки соседних клеток скреплены между собой пектиновыми веществами, образующими срединную пластинку. В результате тургорного давления стенки соседних клеток в углах могут округляться и между ними образуются межклетники. Стенка клетки представляет собой продукт жизнедеятельности ее протопласта . Поэтому стенка может расти, только находясь в контакте с протопластом. Однако при отмирании протопласта стенка сохраняется и мертвая клетка может продолжать выполнять функции проведения воды или играть роль механической опоры. Основу клеточной стенки составляют высокополимерные углеводы: молекулы целлюлозы (клетчатки) , собранные в сложные пучки - фибриллы, образующие каркас, погруженный в основу (матрикс), состоящий из гемицеллюлоз , пектинов и гликопротеидов ( рис. 21 ). Молекулы целлюлозы состоят из большого числа линейно расположенных мономеров - остатков глюкозы . Целлюлоза очень стойка, не растворяется в разбавленных кислотах и даже в концентрированных щелочах. Эластичный целлюлозный скелет придает клеточной оболочке механическую прочность. Первоначально число микрофибрилл, образованных молекулами целлюлозы, в клеточной стенке относительно невелико, но с возрастом оно увеличивается и клетка теряет способность к растяжению. Гемицеллюлозы отличаются от целлюлозы составом мономеров и разветвленным их расположением в молекулах. Являясь одним из компонентов пластичного матрикса, гемицеллюлозы придают клеточной стенке дополнительную прочность, но почти не препятствуют ее росту. Гемицеллюлозы могут быть и запасными веществами, так как легко гидролизуются. Кроме гемицеллюлоз в матрикс, а также в срединную пластинку входят пектиновые вещества, или пектины , и полисахариды , образованные мономерами - уроновыми кислотами . Эти вещества скрепляют, склеивают оболочки соседних клеток. Молекулы гемицеллюлоз, пектина и гликопротеидов соединяют целлюлозные микрофибриллы. Помимо полисахаридов , в матриксе стенок многих клеток часто обнаруживаются неуглеводные компоненты. Наиболее обычен из них лигнин - полимерное вещество полифенольной природы. Содержание его в стенках некоторых видов клеток может достигать 30%. Лигнин откладывается при завершении роста стенки. Процесс отложения лигнина получил название одревеснения, или лигнификации . Стенка, пропитанная лигнином, очень прочна и тверда. Лигнифицируются чаще всего оболочки клеток, подвергающихся механическим нагрузкам. Стенки некоторых типов клеток могут включать слои липидов : воска , кутина и суберина . Кутин и воскобычно покрывают наружные стенки клеток эпидермы. Слой кутина создает на поверхности растения водо- и воздухонепроницаемый слой кутикулы . Суберин пропитывает стенки. Он непроницаем для воды и газов, поэтому такая суберинизированная, или опробковевшая, клетка быстро отмирает.