Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
вопросы и ответы ботаника (не завершен).docx
Скачиваний:
219
Добавлен:
29.01.2020
Размер:
3.59 Mб
Скачать

5.Пластиды, строение и их биологическое значение. Типы пластид.

От греческого слова - ищменчивый, пластичный.

Пластиды – органоиды, содержащиеся только в растительной клетке. Каждая пластида ограничена двумя элементарными мембранами. Пластиды разнообразны по форме, строению и функциям. В зависимости от окраски, различают три основных типа пластид: хлоропласты – зеленые, хромопласты – желто-оранжевые или красные, лейкопласты – бесцветные.

Пластиды имеют единое происхождение от пропластид меристематических клеток. Возможны взаимные превращения пластид в онтогенезе вида. Обычно в клетке содержится только один из типов пластид.

Хлоропласты широко распространены у низших и высших растений. Зеленая окраска хлоропластов обусловлена присутствием зеленого пигмента – хлорофилла. В хлоропластах при участии солнечной энергии идет фотосинтез – процесс образования органических веществ из воды и углекислого газа.

Кроме хлорофилла в состав хлоропластов входят каротиноиды: каротин – пигмент оранжево-красный; ксантофилл – желтый. В зеленых листьях они маскируются хлорофиллом и становятся заметными при его разрушении (например, осенью или при заболеваниях). Форма относительно постоянна – линзообразная. Чаще всего хлоропласты равномерно располагаются по цитоплазме, но способны к движению. Они меняют своё положение в зависимости от условий освещения так, чтобы наилучшим образом улавливать свет.

Хромопласты – пластиды желтого или красно-оранжевого цвета. Хромопласты встречаются в созревающих плодах (томаты, шиповник, рябина, арбуз), в клетках лепестков (роза, лютик, одуванчик), в корнеплодах (морковь), в осенних листьях.

В отличие от хлоропластов форма хромопластов очень изменчива: глобулярная, фибриллярная, кристаллическая. Например, в плодах рябины хромопласты имеют вытянутую, заостренную, слегка изогнутую форму, в клетках плодов шиповника и перца красного – овальную.

Лейкопласты пигментов не содержат. Это обычно довольно мелкие пластиды. Встречаются в клетках корней, корневищ и клубней, а также в семенах, других органах, скрытых от солнечного света. Лейкопласты не имеют строго определенной формы: они бывают округлые, яйцевидные, веретенообразные, палочковидные, амебовидные, чашевидные и т.д.; причем форма их даже в одной клетке может меняться несколько раз. В клетке они скапливаются вокруг ядра.

Главная функция пластид – синтез органических веществ, благодаря наличию собственных ДНК и РНК и структур белкового синтеза. В пластидах также содержатся пигменты, обусловливающие их цвет. Все виды данных органелл имеют сложное внутреннее строение. Снаружи пластиду покрывают две элементарные мембраны, имеется система внутренних мембран, погруженных в строму или матрикс.

Главная функция пластид – синтез органических веществ, благодаря наличию собственных ДНК и РНК и структур белкового синтеза. В пластидах также содержатся пигменты, обусловливающие их цвет. Все виды данных органелл имеют сложное внутреннее строение. Снаружи пластиду покрывают две элементарные мембраны, имеется система внутренних мембран, погруженных в строму или матрикс.

6.Клеточная стенка, ее биологическое значение. Клеточная стенка (нередко в качестве синонима термина "клеточная стенка" в учебной и научной литературе используется термин "клеточная оболочка".) у растений - это структурное образование, располагающееся по периферии клетки, за пределами плазмалеммы , придающее клетке прочность, сохраняющее ее форму и защищающее протопласт . Клеточная стенка растений противостоит высокому осмотическому давлению большой центральной вакуоли и препятствует разрыву клетки. Кроме того, совокупность прочных клеточных стенок выполняет роль своеобразного внешнего скелета, поддерживающего форму растения и придающего ему механическую прочность. Клеточная стенка, обладая большой прочностью, в то же время способна к росту, и прежде всего к росту растяжением. Клеточная стенка, как правило, прозрачна и хорошо пропускает солнечный свет. Через нее легко проникают вода и низкомолекулярные вещества, но для высокомолекулярных веществ она полностью или частично непроницаема. У многоклеточных организмов стенки соседних клеток скреплены между собой пектиновыми веществами, образующими срединную пластинку. В результате тургорного давления стенки соседних клеток в углах могут округляться и между ними образуются межклетники. Стенка клетки представляет собой продукт жизнедеятельности ее протопласта . Поэтому стенка может расти, только находясь в контакте с протопластом. Однако при отмирании протопласта стенка сохраняется и мертвая клетка может продолжать выполнять функции проведения воды или играть роль механической опоры. Основу клеточной стенки составляют высокополимерные углеводы: молекулы целлюлозы (клетчатки) , собранные в сложные пучки - фибриллы, образующие каркас, погруженный в основу (матрикс), состоящий из гемицеллюлоз , пектинов и гликопротеидов ( рис. 21 ). Молекулы целлюлозы состоят из большого числа линейно расположенных мономеров - остатков глюкозы . Целлюлоза очень стойка, не растворяется в разбавленных кислотах и даже в концентрированных щелочах. Эластичный целлюлозный скелет придает клеточной оболочке механическую прочность. Первоначально число микрофибрилл, образованных молекулами целлюлозы, в клеточной стенке относительно невелико, но с возрастом оно увеличивается и клетка теряет способность к растяжению. Гемицеллюлозы отличаются от целлюлозы составом мономеров и разветвленным их расположением в молекулах. Являясь одним из компонентов пластичного матрикса, гемицеллюлозы придают клеточной стенке дополнительную прочность, но почти не препятствуют ее росту. Гемицеллюлозы могут быть и запасными веществами, так как легко гидролизуются. Кроме гемицеллюлоз в матрикс, а также в срединную пластинку входят пектиновые вещества, или пектины , и полисахариды , образованные мономерами - уроновыми кислотами . Эти вещества скрепляют, склеивают оболочки соседних клеток. Молекулы гемицеллюлоз, пектина и гликопротеидов соединяют целлюлозные микрофибриллы. Помимо полисахаридов , в матриксе стенок многих клеток часто обнаруживаются неуглеводные компоненты. Наиболее обычен из них лигнин - полимерное вещество полифенольной природы. Содержание его в стенках некоторых видов клеток может достигать 30%. Лигнин откладывается при завершении роста стенки. Процесс отложения лигнина получил название одревеснения, или лигнификации . Стенка, пропитанная лигнином, очень прочна и тверда. Лигнифицируются чаще всего оболочки клеток, подвергающихся механическим нагрузкам. Стенки некоторых типов клеток могут включать слои липидов : воска , кутина и суберина . Кутин и воскобычно покрывают наружные стенки клеток эпидермы. Слой кутина создает на поверхности растения водо- и воздухонепроницаемый слой кутикулы . Суберин пропитывает стенки. Он непроницаем для воды и газов, поэтому такая суберинизированная, или опробковевшая, клетка быстро отмирает.