- •1. Краткая характеристика курса (теории информации), цель и задачи.
- •2. Амплитудная, частотная и фазовая модуляция.
- •3. Сообщение как случайный процесс
- •4. Сигналы ам и чм в виде временного, спектрального и векторного вида.
- •5. Величина Хартли. Количественная оценка информации.
- •6. Спектральное отличие сигналов чм и фм и частота полосовой ширины.
- •7. Представление об информации.
- •9. Распространение информации по дискретному каналу без помех.
- •10. Способы дискретной модуляции.
- •11. Пропускная способность канала без помех.
- •12. Исправление одиночных или обнаружение двойных ошибок.
- •13. Теорема пропускной способности дискретного канала без помех.
- •14. Циклические коды.
- •15. Математическая модель дискретного канала без помех.
- •16. Методы построения циклических кодов.
- •17. Дискретные каналы с помехами. Понятие помех.
- •Естественные помехи
- •Искусственные помехи
- •18. Рентабельность теоремы о кодировании.
- •19. Скорость передачи информаци и пропускная способность.
- •20. Сообщающие коды об ошибках.
- •23. Пропускная способность дискретных каналов с помехами.
- •24. Циклические линейные коды.
- •25. Теоремы для пропускной способности дискретного канала с помехами.
- •26. Критерии оптимального приёма информации
- •27. Математическая модель дискретного канала с помехами.
- •29. Непрерывный канал. Передача информации в непрерывном канале.
- •30. Синтез Алгоритмов и схем оптимальных приёмников, корреляционный приёмник.
- •31. Дискретизация и принципы восстановления информации.
- •32. Разность модуляции и приема.
- •33. Разложение непрерывного сигнала в ортогональные ряды.
- •34. Многоканальная связь.
- •35. Ряды Фурье и применение их в технике связи.
- •36. Методы частотного, временного и фазового разделения сигналов.
- •37. Теорема Котельникова (основная теорема Шеннона).
- •38. Разделение сигналов по форме (кодовое разделение).
- •39. Пропускная способность непрерывного канала.
- •40. Комбинационное разделение.
- •41. Модель непрерывного канала связи.
- •42.Цифровые методы распространение непрерывной информации.
- •43. Методы формирования и преобразования сигналов в системе связи.
- •44. Аналого-цифровые и цифро-аналоговые преобразователи.
- •45. Модуляция гармонических сигналов.
- •46. Импульсно-кодовая модуляция (икм). Дифференциальные икм.
- •47. Цифровые методы передачи информации.
- •48. Дискретизация по времени и квантование.
- •49. Краткая характеристика курса (теории информации), цель и задачи.
- •50. Теорема об эффективном кодировании.
- •51. Общие принципы использования избыточности
- •52. Понятие помехи. Методы борьбы с помехами.
- •53. Корректирующая способность кода.
- •54. Задачи дискретизации (общая постановка)
- •55. Геометрическая интерпретация блоковых корректирующих кодов.
- •56. Структура кадра икм-30
- •57. Линейные коды
- •58. Критерии оптимального приема сообщений
- •59. Определение проверочных равенств
- •60. Оптимальные когерентные демодуляторы на согласованных фильтрах.
- •61. Составление таблиц опознавателей.
- •62. Оптимальные когерентные приемники (алгоритмы и структурные схемы).
- •63. Математическое введение к линейным кодам.
- •64. Дискретизация по методу наибольшего отклонения.
- •65. Бчх коды.
- •66 Критерии качества восстановления (кода)
- •67. Блоковые коды.
- •68. Свойства энтропии.
- •70. Методы модуляции носителей информации.
- •71. Коды Голея.
- •72. Виды помех.
- •73. Коды Шеннона-Фано-Хаффмена.
- •Алгоритм вычисления кодов Шеннона-Фано
- •74. Математическая модель дискретного канала с помехами.
- •75 Коды Рида-Соломона
- •76. Теорема Котельникова (основная теорема Шеннона)
- •77. Формы представления детерминированных сигналов.
- •78. Модель непрерывного канала.
- •79. Основные этапы обращения информации.
- •2 Достоверность и полнота
- •3 Обработка и систематизация
- •4 Интерпретация
- •80. Балансовая и однополосная модуляция.
48. Дискретизация по времени и квантование.
В последнее время в технике идет переход на цифровые методы обработки информации. Это связано с тем, что цифровую информацию легче хранить (появились дешевые и удобные устройства для хранения информации, такие как жесткие диски компьютеров или лазерные диски), а также с тем, что цифровую информацию легко передавать по современным линиям связи практически без потерь.
Аналоговый сигнал - это в простейшем случае число x(t), зависящее от времени t. При записи на носитель информации или воспроизведении с него сигнал неизбежно искажается различного рода шумами. Восстановить искаженный сигнал (убрать шумы) нельзя. Можно, конечно, пытаться подавлять шумы, используя некоторую дополнительную информацию (например, можно подавлять частоты, в которых сосредоточены шумы), но при этом мы теряем также и информацию о самом сигнале, т.е. опять же вносим искажения.
При оцифровке сигнала x(t) производятся две операции - дискретизация и квантование. Дискретизация -- это замена сигнала x(t) с непрерывным временем t на дискретизованный сигнал -- последовательность чисел x(ti)для дискретного набора моментов времени t1, t2, ..., ti, ...(чаще всего интервалы между моментами времени ∆t =ti-t(i-1)берутся одинаковыми). При дискретизации, конечно, часть информации о сигнале теряется. Но если сигнал x(t) за время ∆t не сильно изменяется, числа x(ti)и x(t i-1)близки друг к другу, то поведение x(t)между временами tiи ti-1 нетрудно восстановить (сигнал практически линейно изменяется во времени от x(ti-1) до x(ti) ). При дискретизации мы теряем частотные составляющие сигнала с частотами порядка f>1/∆t и выше.
При дискретизации время из аналогового как бы становится цифровым -- моменты времени tiможно нумеровать, кодировать. Производится замена непрерывного времени t на нечто, которое может принимать не все значения, а только некоторые, а именно t1 , t2, ..., ti, ... Квантование сигнала -- это нечто похожее, только данная процедура производится не со временем, а со значением сигнала x. Выбирается некий набор возможных значение сигнала x1, x2, ..., xn, ... и каждому x(ti)сопоставляется ближайшее число из этого набора.
49. Краткая характеристика курса (теории информации), цель и задачи.
Большинство изданий по дисциплине теории информации написано на высоком математическом уровне. В то же время теория информации – наука прикладная, она служит теоретическим фундаментом техники связи, радиолокации, техники обработки информации. Её результаты должны находить практическое применение. Для этого нужно чтобы инженеры – проектировщики систем могли понять и оценить результаты теории.
Информационная наука находит применение в самых разнообразных областях. В связи с этим нет всеобщего для всех наук классического определения понятия “информация”. В каждом направлении используют определение, ее отдельных составляющих, наиболее важных для данной науки. Для теории систем информация выступает как мера организации системы. Для теории познания важно, что информация изменяет наши знания. Под информацией понимают не все получаемые сведения, а только те, которые еще не известны и являются новыми для получателя, В этом случае информация является мерой устранения неопределенности. Для машинной обработки информация должна быть представлена в виде сообщений на определенном языке. Специалистам связи важно, что информация-это сведения, являющиеся объектом передачи и обработки.
Приступая к систематическому изучению теории информации, следует по возможности уточнить смысл понятий «сигнал» и «сообщение».
Сигнал (лат.Signum-знак)- процесс изменения во времени физического состояния какого-либо объекта, служащий для отображения регистраций или передачи SMS.
Сообщение- форма представления информации. Это условные знаки, с помощью которых мы получаем те или другие сведения.
Канал электросвязи – это совокупность технических средств и среды распространения сигналов, обеспечивающая при подключении абонентских устройств передачу сообщений от источника к получателю.
Введение способа измерения количества информации К. Шенноном в конце 40-х годов привело к формированию самостоятельного научного направления под названием “Теория информации”. Параллельно на основе работ В.А. Котельникова развивалось другое научное направление - теория помехоустойчивости.
Теория информации решала задачу максимизации средней скорости передачи. Главной задачей теории помехоустойчивости является отыскание таких способов передачи и приема, при которых обеспечивалась бы наивысшая достоверность принятого сообщения. Обе задачи являются, по сути различными сторонами одного и того же процесса обработки информации при ее передаче и приеме.
В 1946 и 1956 гг. В.А. Котельниковом были опубликованы работы по оптимальным методам приема и потенциальной помехоустойчивости. Использование результатов этих работ дало возможность судить о том, насколько данная конкретная аппаратура близка к идеальной по своей способности выделять сигнал из смеси его с помехами.
Первой серьезной работой по теории передачи информации следует считать труд Р.Хартли “Передача информации”, изданный в 1928г. Немало важное значение для теории передачи дискретных сигналов имела работа Найквиста “Некоторые факторы, воздействующие на скорость телеграфирования” (1924г.).
Существенным шагом в становлении новой теории передачи информации явилась “Математическая теория связи” К.Шеннона. В этой работе доказана теорема о пропускной способности канала связи. Оказалось, что при скоростях передачи, меньших пропускной способности канала, существуют методы передачи (кодирования) и приема (декодирования), позволяющие восстановить передаваемый сигнал со сколь угодно малой вероятностью ошибки, несмотря на наличие помех.
Работы В.А. Котельникова и К. Шеннона создали фундамент теории передачи сигналов, которая получила дальнейшее развитие благодаря работам многих ученых по отдельным ее разделам.
