
- •Метрологические характеристики измерений и средств измерений. Классификация измерений, методов измерений и средств измерений.
- •Погрешности измерения: систематические (инструментальные, методические), случайные. Методы их обнаружения.
- •Погрешности средств измерения: абсолютные, относительные, приведенные, основные, дополнительные
- •Способы задания результатов измерения (классы точности).
- •Методы измерения: прямые, косвенные, непосредственной оценки, сравнения (нулевые).
- •Электромеханические приборы: магнитоэлектрический, электромагнитной, электростатической, электродинамической систем (принцип действия, уравнения шкалы, преимущества и недостатки).
- •Электростатические приборы
- •Электродинамические приборы
- •Измерение постоянных токов. Шунты и добавочные сопротивления. Их характеристики и параметры. Амперметры
- •Измерение переменных токов. Погрешности: по току (по напряжению), угловые погрешности. Схемы включения амперметра и вольтметра для измерения больших токов и напряжений.
- •Электронные осциллографы: электронно-лучевая трубка, блок-схема осциллографа.
- •Непрерывная и ждущая развертка, синусоидальная и круговая развертка, методы измерения параметров сигнала: напряжения, фазы, частоты. Фигуры Лиссажу.
- •Измерение частоты
- •Измерение сдвига фаз
- •15. Мосты переменного тока. Назначение, уравнение сходимости моста.
- •17. Измерение частоты электронно-счетным методом
- •18. Электроно – счётный метод измерения интервалов времени
- •Перечислите достоинства и недостатки нормирования погрешности по ее допускаемому пределу.
- •21.Что такое приведенная погрешность, как она находится? Какое значение имеет для средств измерений?
- •22.Что характеризуют коэффициент отклонения и коэффициент развертки и зачем их регулируют?
- •23. Как делят погрешности по характеру их проявления? Приведите примеры постоянных и изменяющихся во времени систематических погрешностей.
- •24. Как проявляется погрешность квантования при многократных наблюдениях в случае, если измеряемая величина постоянная или изменяется от наблюдения к наблюдению?
- •27.Каким погрешностям в метрологии принято приписывать равномерный, треугольный, трапециидальный законы распределения?
- •28.Какие измерения называются косвенными? Как определяется абсолютная и относительная погрешности косвенных измерений?
- •31.Приведите формулу для определения погрешности для единичного измерения, если известны номинальные значение параметра и класс точности прибора.
- •40.Надо сравнить показания трех приборов с разными классами точности и пределами измерения. Какую погрешность при этом используете?
- •41. Класс точности прибора определен цифрой в кружочке. Что он характеризует и какой погрешностью определяется?
- •44. Пояснить при помощи потенциально-временных диаграмм принцип работы времяимпульсного ацп. Чем определяются погрешности преобразования?
- •47.Расскажите о преобразователе скз.
- •49.Коэффициент нелинейных искажений.
- •79. Круговая развертка.
- •82.Измерение угла сдвига фаз при помощи осциллографа.
- •101. В чем заключается гетеродинный метод измерения частоты.
- •103. Что такое болометр, где он используется при измерениях в рту?
- •104. Его отличия от термистора, термопреобразователя.
- •108. Устройство, принцип действия измерительного механизма магнитоэлектрической системы.
- •110. Детектор средневыпрямленного значения
- •111.Детектор среднеквадратического значения
- •1. Детектирование радиоимпульсов с целью выделения огибающей каждого из них (импульсный детектор);
- •2. Детектирование последовательности радиоимпульсов с целью выделения ее огибающей (пиковый детектор);
- •3. Детектирование последовательности видеоимпульсов с целью выделения ее огибающей (детектор видеоимпульсов).
Электромеханические приборы: магнитоэлектрический, электромагнитной, электростатической, электродинамической систем (принцип действия, уравнения шкалы, преимущества и недостатки).
В приборах магнитоэлектрической системы используется взаимодействие поля постоянного магнита с катушкой (рамкой), по которой протекает ток. Конструктивно измерительный механизм может быть выполнен либо с подвижным магнитом, либо с подвижной катушкой. На (рис.5.2) показана конструкция прибора с подвижной катушкой.
Уравнение
преобразования можно получить, если
подставить в формулу (5.1) выражение
для вращающего момента Мвр,
действующего на подвижную часть
магнитоэлектрического механизма
α = (BwS/W)I = SI ∙ I, (5.2)
где B – магнитная индукция в воздушном зазоре; w – число витков рамки; S – ее площадь; I – ток, протекающий по рамке.
Коэффициент пропорциональности SI = BwS/W называется чувствительностью магнитоэлектрического механизма к току.
Из группы аналоговых приборов магнитоэлектрические приборы относятся к числу наиболее чувствительных и точных. Изменения температуры окружающей среды и внешние магнитные поля мало влияют на их работу. Для измерений в цепях переменного тока требуется предварительное преобразование переменного тока в постоянный.
Электростатические приборы
Принцип действия электростатических приборов основан на взаимодействии электрически заряженных проводников. Подвижная алюминиевая пластина, закрепленная вместе со стрелкой на оси, может перемещаться, взаимодействуя с двумя электрически соединенными неподвижными пластинами . Входные зажимы, к которым подводится измеряемое напряжение, соединены с подвижной и неподвижными пластинами. Под действием электростатических сил подвижная пластина втягивается в пространство между неподвижными пластинами.
Уравнение преобразования электростатического прибора для постоянного тока
α = (1/2W)(dС/dα)U2, (5.9)
где С - емкость между пластинами, зависящая от их взаимного расположения; U- измеряемое напряжение. Из (5.9) следует, что показание прибора не зависит от полярности приложенного напряжения.
В случае переменного тока уравнение остается прежним, но только переменная U является действующим значением переменного напряжения.
Достоинства: широкий частотный диапазон, малое потребление энергии, независимость показаний от внешних магнитных полей.
Недостатки: низкая чувствительность и невысокую точность.
Электродинамические приборы
Принцип действия электродинамических приборов основан на взаимодействии магнитных полей двух катушек, по которым протекает ток (рис.5.6).
Рисунок 5.6 – Электродинамический измерительный прибор
Внутри неподвижной катушки 1 может вращаться подвижная катушка 2. Поворот осуществляется вращающим моментом, вызванным взаимодействием магнитных полей катушек 1 и 2. Уравнение преобразования прибора для постоянных токов имеет вид
α = (1/W)(dM/dα)I1I2, (5.4)
где М – взаимная индуктивность катушки; I1I2 – токи в катушках.
Если по катушкам протекают переменные токи, то это выражение примет вид
α = (1/W)(dM/dα)I1I2cos(φ1 – φ2). (5.5)
Из этого уравнения следует, что перемещения подвижной части механизма при работе на переменном токе зависят как от токов в его катушках, так и от разности фаз между этими токами. Это дает возможность использовать приборы электродинамической системы не только в качестве амперметров и вольтметров, но и в качестве ваттметров.
В амперметрах катушки соединены последовательно (рис.5.7.а) или параллельно (рис.5.7.б). Последовательное соединение используется в приборах, предназначенных для измерения малых токов (до 0,5 А). При больших токах (до 10 А) катушки включаются параллельно.
Рисунок 4.7 – Схема соединений катушек амперметра
В последовательной схеме амперметра I1 = I2 = I, φ1 – φ2 = 0, поэтому уравнение преобразования (4.5) сводится к виду
α = (1/W)(dM/dα)I2, (4.6)
т.е. при условии dМ/dα = const угол поворота стрелки α квадратично зависит от тока, протекающего в катушках.
В этом случае шкала неравномерна. Поэтому расположение и форму катушек выбирают так, чтобы производная dM/dα зависела от угла между подвижной и неподвижной катушками.
В параллельной схеме I1 = kI; I2 = kI, а разность фаз также устанавливается равной нулю подбором индуктивностей в цепях катушек.
Вольтметры выполняются по схеме (рис.5.8). Катушки включаются последовательно, ток через них ограничивается добавочным резистором Rдоб.
Уравнение преобразования вольтметра имеет вид
α = (1/W)(dM/dα)(U2/R2), (5.7)
где R - общее сопротивление цепи прибора.
Как и в случае амперметров, изменением dM/dα добиваются почти равномерного характера рабочего участка электродинамических вольтметров.
Рисунок 5.8 – Схема включения катушек вольтметра
Обычно электродинамические вольтметры выполняются многопредельными при помощи нескольких добавочных резисторов.
Схема соединения катушек ваттметра и его включения в цепь для измерения мощности, потребляемой нагрузкой Zн , приведена на (рис.5.9).
Рисунок 5.9 – Схема включения ваттметра
Ток I1 в неподвижной катушке равен току нагрузки, а ток I2 в подвижной катушке пропорционален приложенному напряжению:
I2 = U/(Rдоб + r),
где Rдоб - сопротивление добавочного резистора; r — сопротивление подвижной катушки.
С учетом этого и (5.5) уравнение шкалы для ваттметра
α = (1/W(Rдоб + r))(dM/dα)Р (5.8)
где Р - активная мощность нагрузки.
Погрешности электродинамических приборов возникают из-за температурных влияний и наличия внешних магнитных полей. При повышении частоты до нескольких сот герц существенными становятся также частотные погрешности.
Электромагнитный измерительный механизм представлен на (рис.5.10), где 1 - катушка; 2 - сердечник, укрепленный на оси прибора; 3 - спиральная пружина, создающая противодействующий момент; 4 - воздушный успокоитель.
Рисунок 5.10 – Конструкция электромагнитного прибора
Под действием магнитного поля сердечник втягивается внутрь катушки. Подвижная часть механизма поворачивается до тех пор, пока вращающий момент не уравновесится противодействующим моментом, создаваемым пружиной.
Уравнение преобразования прибора имеет вид
α = (1/2W)(dL/dα)I2, (5.10)
где L - индуктивность катушки, зависящая от положения сердечника, а следовательно, и от угла поворота подвижной части.
Из (5.10) следует, что угол поворота подвижной части механизма пропорционален квадрату действующего значения тока, т.е. не зависит от направления тока. Поэтому электромагнитные приборы одинаково пригодны для измерений в цепях постоянного и переменного тока.
Достоинства: низкая стоимость, надежность, пригодность для измерения в цепях постоянного и переменного тока.
Недостатки: большое потребление энергии, малая точность и чувствительность, сильное влияние внешних магнитных полей.
Заключение: у большинства электромеханических приборов входное сопротивление невелико (килоомы), поэтому они пригодны для измерения напряжения только в низкоомных цепях. В цепях с высокоомными нагрузками (мегаомы) эти приборы (за исключением электростатических) использовать нельзя, так как при их включении шунтируется нагрузка и тем самым изменяется электрический режим цепи. Кроме того, малый диапазон частот, большие входные емкости и индуктивности, зависимость входного сопротивления от частоты.