Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
В1 Термин.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
740.34 Кб
Скачать

История термина [править]

Идеи единства всего живого в природе, его взаимодействия и обуславливания процессов в природе ведут своё начало с античных времён. Однако приобретать современную трактовку понятие стало на рубеже XIX—XX веков. Так, немецкий гидробиолог К. Мёбиус в 1877 году описывал устричную банку как сообщество организмов и дал ему название «биоценоз». В классическом труде американского биолога С. Форбса (англ.)русск. озеро со всей совокупностью организмов определяется как «микрокосм» («Озеро как микрокосм» — «The lake as a microcosme»  (англ.), 1887[1]). Современный термин впервые был предложен английским экологом А. Тенсли (англ.)русск. в 1935 году. В. В. Докучаев также развивал представление о биоценозе как о целостной системе. Однако в русской науке общепринятым стало введённое В. Н. Сукачёвым понятие о биогеоценозе (1944). В смежных науках существуют также различные определения, в той или иной степени совпадающие с понятием «экосистема», например, «геосистема» в геоэкологии или введённые примерно в тот же период другими учёными «голоцен» (Ф. Клементс, 1930) и «биокосное тело» (В. И. Вернадский, 1944)[2][3].

В17

Энергия экосистем

Если движение вещества зачастую организуется в глобальный круговорот, захватывающий многие экосистемы биосферы, то движение энергии удобно рассматривать на примере какой-то одной экосистемы. Достаточно крупные экосистемы, такие как биогеоценозы, имеют все промежуточные уровни, которые проходит энергия при движении ее от состояния солнечного света до состояния тепла, которое сначала утилизируется в буферных зонах биосферы (атмосфера, гидросфера, литосфера), а затем излучается в космическое пространство (в инфракрасной части электромагнитного спектра). Вывод энтропии из организма есть непременное условие его существования. Все процессы жизнедеятельности сопровождаются ростом внутренней энтропии организма Si > 0. Чтобы не погибнуть, клетка должна потребить из окружающей среды отрицательную энтропию (негэнтропию, информацию) Se < 0, что равносильно выводу энтропии из организма. Для этого обычно используется энергия химических реакций. Нужно взять из окружающей среды необходимые компоненты (пища) и создать условия для протекания реакции, продуктами которой должны стать вещества, содержащие в своей структуре больше энтропии, чем исходные компоненты. Обычно в этих реакциях разрушаются структуры более сложных молекул, например, молекул белка, жиров или углеводов. Затем эти продукты распада удаляются из организма. Себе же организм оставляет нечто, характеризующееся разницей энтропии исходных компонентов и энтропии продуктов реакции Se = Sисх-Sпрод < 0. Это нечто мы называем свободной энергией, которая по отношению к данному организму обладает отрицательной энтропией (негэнтропией), и за счет которой приводятся в движение внутренние упорядоченные процессы. Например, глюкоза сгорает в организме, образуя двуокись углерода и воду. Это один из самых универсальных процессов, который лежит в основе дыхания и пищеварения. Разумеется, при сгорании глюкозы внутри организма не возникает пламени: живой организм устроен гораздо сложнее и тоньше, чем очаг, он извлекает свободную энергию химическими средствами, не допуская более знакомого нам расточительного сгорания. Продукты реакции, двуокись углерода и вода удаляются из организма при дыхании, потовыделении, экскрементации и т.п. Высвобожденная энергия претерпевает ряд превращений, обеспечивая тем самым протекание всех физиологических процессов, двигательных функций и т.п. Эту часть энергии рассматривают как траты на дыхание. Частично деградируя в каждом таком превращении, энергия постепенно полностью переходит в тепло, которое после этого удаляется из организма в окружающую среду.  Однако не вся свободная энергия, полученная в подобных экзотермических реакциях, проходит через организм подобным путем. Часть энергии используется на организацию ряда эндотермических реакций, то есть связывается в сложных молекулярных структурах. В первую очередь это реакции синтеза необходимых белков, нуклеиновых кислот и т.п. В данном случае эта доля свободной энергии идет на строительство и “ремонт” организма, то есть на упорядочение внутренней структуры. Эта энергия, накопленная в веществе организма, называется продукцией. Некоторая доля пищи не усваивается организмом, следовательно, из нее не высвобождается энергия. Эта энергия выводится из организма вместе с экскрементами и впоследствии высвобождается из них уже другими организмами. Ввиду наличия в своей структуре сложномолекулярных соединений, данный организм может служить пищей для другого организма. При этом его структура подвергается механическому и химическому разрушению. Высвободившаяся при этом свободная энергия используется так же, как в вышеописанном случае. Таким образом, формируется так называемая пищевая или трофическая (от греческого слова трофе - питание) цепь, в которой происходит перенос энергии через ряд организмов путем поедания одних организмов другими. Трофическая цепь, как правило, иерархична, то есть состоит из последовательности уровней, называемых трофическими уровнями. Организмы, стоящие на каждом трофическом уровне, приспособлены природой для потребления определенного вида пищи, в качестве которой выступают организмы предыдущего трофического уровня (или нескольких предыдущих уровней). В принципе, организмы с более высоких трофических уровней также могут служить пищей на данном уровне, но это не является характерным, так как каждый следующий уровень трофической цепи аккумулирует в себе более качественную энергию и поэтому играет регулирующую функцию по отношению к нижним уровням, о чем будет подробнее сказано ниже. Другими словами, чем дальше трофический уровень от начала цепи, тем сильнее влияние организма на окружение, тем больше его возможности. Трофические цепи можно разделить на два основных типа: пастбищную цепь и детритную цепь. На вершине пастбищной цепи стоят зеленые растения (рис.19). Они не могут высвобождать энергию путем разрушения органики с предыдущего трофического уровня, поэтому единственным источником энергии является солнечный свет. При этом используются только достаточно энергичные фотоны длиной волны 380-710 нм, что близко к видимой части спектра (наиболее сильно поглощаются синий и красный цвета, зеленый свет поглощается слабее). Эту энергию называют фотоактивной радиацией (ФАР). В качестве строительного материала, то есть исходных компонентов для синтеза, используются простейшие минеральные и органические вещества, рассеянные в почве и в воздухе. К наиболее важным компонентам относится углекислый газ, являющийся продуктом жизнедеятельности всех организмов планеты. Именно здесь происходит возвращение в круговорот биологического углерода. Так как зеленые растения “никого не едят” и все необходимое для их жизни синтезируют сами (конечно с участием солнечного света), их называют автотрофами (“самопитающимися”). Все остальные уровни трофической цепи существуют за счет энергии, накопленной в органике зеленых растений. Поэтому по отношению к трофической цепи растения называют продуцентами, то есть создающими первичную продукцию. Организмы на всех остальных уровнях трофической цепи называются консументами (потребителями) первого, второго и т.д. порядка в зависимости от трофического уровня. Так как эти организмы не могут сами синтезировать органику и вынуждены питаться другими организмами, их называют гетеротрофами (питающийся другими). На втором уровне пастбищной цепи стоят обычно фитофаги, то есть животные, питающиеся растениями, в частности травоядные. Третий и более высокий уровни занимают хищники или зоофаги (питающиеся животными). Иногда эта цепочка может быть достаточно длинной, особенно в водоемах. Например, фитопланктон - зоопланктон - личинки насекомых - мелкая рыба - крупная рыба - хищные животные суши - животные, питающиеся падалью. Могут быть и промежуточные звенья. Любая пастбищная цепь переходит в детритную цепь. Термин детрит означает «продукт распада» от латинского слова deterere - изнашиваться. Он позаимствован из геологии, где им называют продукты разрушения горных пород. В экологии детритом называют органическое вещество, вовлеченное в процесс разложения. Уже уровень животных-падальщиков можно считать началом детритной цепи. В отличие от пастбищной цепи размеры организмов при движении вдоль детритной цепи не возрастают, а наоборот, уменьшаются. Так на втором уровне могут стоять насекомые-могильщики. Но самыми типичными представителями детритной цепи являются грибы и микроорганизмы, питающиеся мертвым веществом и довершающие продукт разложения биоорганики до состояния простейших минеральных и органических веществ, которые затем в растворенном виде потребляются корнями зеленых растений в вершине пастбищной цепи, начиная тем самым новый круг движения вещества. Поэтому такие организмы-деструкторы (разрушители) называются еще редуцентами (от латинского слова редуцере - возвращать), или сапрофагами (от греческого слова сапрос - гнилой). Пастбищная и детритная цепи в разных экосистемах присутствуют по-разному. Например, в лесу лишь небольшая часть зелени поступает в пищу консументам. Большая часть отмерших растений и их фрагментов поступает непосредственно к редуцентам. То есть лес считается экосистемой с преобладанием детритных цепей. В экосистеме гниющего пня пастбищная цепь вообще отсутствует. В то же время, например, в экосистемах поверхности моря практически все продуценты, представленные фитопланктоном, потребляются животными, а их трупы опускаются на дно, то есть уходят из данной экосистемы. В таких экосистемах, как говорят, преобладают пастбищные пищевые цепи или цепи выедания. В любой экосистеме разные пищевые цепи не изолированы друг от друга, а переплетаются друг с другом в сложные пищевые (трофические) сети. Эти сети могут быть достаточно сложными и динамичными. Бывает очень трудно отнести какое-то животное к тому или иному уровню трофической сети. Ярким примером является человек, который питается как растениями, так и мясом животных. Тем не менее несмотря на некоторую условность деления трофической сети на уровни, в ней всегда присутствуют по крайней мере три уровня, обеспечивающие круговорот вещества в экосистеме: продуценты - консументы - редуценты. Следует отметить, что с одного трофического уровня на другой передается не вся энергия данного уровня, а только та, которая накапливается в структуре организмов данного уровня. Основная часть энергии, усвоенной консументами с пищей, тратится на их жизнеобеспечение (дыхание). В сумме с неусвоенной пищей (экскременты) это составляет в среднем порядка 90 % от потребленной энергии. То есть энергия, накопленная в структурах организмов, а значит, передаваемая на следующий трофический уровень, в среднем составляет около 10 % от энергии, потребленной с пищей. Эта закономерность называется “правилом десяти процентов”. На биосферу из космоса падает солнечный свет с энергией 2 кал/(мин.см2). Проходя через атмосферу, он ослабляется и в ясный летний день до поверхности Земли доходит не более 67 % его энергии, то есть 1,34 кал/(мин.см2), в пасмурный день ослабление еще существенней. За день к автотрофному слою поступает в среднем 300-400 кал/см2. Фотоактивная радиация, используемая при фотосинтезе, составляет порядка 40 % от поступившей солнечной радиации. Из нее растения связывают только около 1 % энергии. Только эта энергия, накопленная в органике растений, составляет первичную продукцию, которая затем может передаваться далее по пищевым цепям. Из ограниченности количества поступающей энергии и правила десяти процентов следует, что все трофические цепи могут иметь только ограниченное количество уровней, как правило не больше 4-5. Количество живого вещества на каждом следующем уровне примерно на порядок меньше, чем на предыдущем. Существует и еще одно следствие, очень важное для нашей цивилизации: с энергетической точки зрения потребление животной продукции, особенно с дальних уровней цепей питания, нецелесообразно. Примером могут служить пруды для спортивной ловли рыбы. Рыболову интересно вылавливать достаточно крупную рыбу, например окуня, который питается более мелкой рыбой. Поэтому для разведения окуней требуется водоем с большим количеством мелкой рыбы, питающейся зоопланктоном и мотылем, которые в свою очередь питаются фитопланктоном и его детритом. Пруд только с мелкой рыбой давал бы больше рыбы по биомассе, чем пруд с окунями, но человеку мелкие рыбы просто не интересны. Особенно велики потери энергии при переходе от растений к травоядным животным. Поэтому с точки зрения роста народонаселения планеты энергетически наиболее выгодным является вегетарианство. Так, например, если мальчик весом 48 кг питался бы только мясом, то за год он съедал бы где-то 4,5 теленка, для выращивания которых требуется урожай люцерны с площади 4 га весом 8211 кг. Таков энергетический эквивалент питания ребенка. При нормальном питании взрослый человек потребляет 80-100 кг мяса в год. При таком рационе уже невозможно обеспечить равноправие для 6 миллиардов людей планеты. При минимальном расходе мяса можно прокормить около 8 миллиардов людей. Переход всех людей на вегетарианство может обеспечить пищей приблизительно 15 миллиардов людей. Эти цифры не зависят от успехов сельского хозяйства, а опираются только на данные по энергетике экосистем. Принципиальное ограничение наложено самим Солнцем. Правда, мы можем привлечь в сельское хозяйство дополнительные энергетические субсидии, в первую очередь от сжигания топлива и ядерных реакций. Собственно, это мы и делаем. Агросистемы - это яркий пример дополнительно субсидируемых экосистем. Здесь дополнительная энергия поступает в виде мышечных усилий человека и животных, работы машин, использующих горючее, орошения, внесения удобрений, пестицидов и т.п. Еще в прошлом веке Мальтус предупреждал, что уже 2 миллиарда людей Земля прокормить не в состоянии. Мы смогли превысить эту цифру только за счет энергетических субсидий в сельское хозяйство. Но этим мы неумолимо приближаем к себе другой аспект экологической катастрофы, которая пока еще нас мало тревожит, но первые ее предвестники уже говорят о себе в возросшей штормовой активности океанов, ослаблении стабильности антарктических ледниковых шельфов и т.п. Я имею в виду тепловую катастрофу. Сможем ли мы преодолеть и эту опасность? Очень сомнительно. Здесь запрет наложен одним из фундаментальнейших законов природы: принципом роста энтропии. Для чего природе нужна столь сложная система передачи энергии? В чем положительная роль идеи сплошного поедания друг друга? Зачем нужны природе разрушители (деструкторы)? Во-первых, все консументы призваны вернуть вещество в круговорот. Без этого жизнь не смогла бы постоянно усложнять свои формы, то есть рано или поздно исчерпался бы лимит возможности роста энтропии. В рамках всей Вселенной это противоречит самим принципам ее существования. Таким образом, несмотря на то, что Земля - это “планета растений” (именно растения являются настоящими созидателями на планете), животные также необходимы для жизни биосферы. Во-вторых, чем сложнее трофическая сеть данной экосистемы, тем интенсивней круговорот веществ. Это облегчает поток энергии через экосистему. В-третьих, консументы - это не просто “пассивные едоки”. Удовлетворяя свои потребности в энергии, они регулируют всю экосистему, то есть являются основными звеньями механизмов гомеостаза экосистем. Причем реализуемые ими обратные связи могут быть не только отрицательными (выедание, то есть уменьшение биомассы предыдущего уровня трофической цепи), но и положительными. Так многие животные разными способами “ухаживают” за своими кормовыми растениями или как-то иначе способствуют их росту. Например, злаки, листья которых объедают кузнечики быстрее восстанавливаются, чем злаки с обрезанными листьями.

Пищева́я (трофи́ческаяцепь — ряды видов растенийживотныхгрибов и микроорганизмов, которые связаны друг с другом отношениями: пища — потребитель (последовательность организмов, в которой происходит поэтапный перенос вещ-ва и энергии от источника к потребителю).

Организмы последующего звена поедают организмы предыдущего звена, и таким образом осуществляется цепной перенос энергии и вещества, лежащий в основе круговорота веществ в природе. При каждом переносе от звена к звену теряется большая часть (до 80—90 %) потенциальной энергии, рассеивающейся в видетепла. По этой причине число звеньев (видов) в цепи питания ограничено и не превышает обычно 4—5

Пищевая цепь представляет собой связную линейную структуру из звеньев, каждое из которых связано с соседними звеньями отношениями «пища — потребитель». В качестве звеньев цепи выступают группы организмов, например, конкретные биологические виды. Связь между двумя звеньями устанавливается, если одна группа организмов выступает в роли пищи для другой группы. Первое звено цепи не имеет предшественника, то есть организмы из этой группы в качестве пищи не использует другие организмы, являясьпродуцентами. Чаще всего на этом месте находятся растенияводоросли. Организмы последнего звена в цепи не выступают в роли пищи для других организмов.

Каждый организм обладает некоторым запасом энергии, то есть можно говорить о том, что у каждого звена цепи есть своя потенциальная энергия. В процессе питания потенциальная энергия пищи переходит к её потребителю. При переносе потенциальной энергии от звена к звену до 80-90 % теряется в виде теплоты. Данный факт ограничивает длину цепи питания, которая в природе обычно не превышает 4-5 звеньев. Чем длиннее трофическая цепь, тем меньше продукция её последнего звена по отношению к продукции начального. Пример: дерево - олень - тигр; трава - мышь - змея; трава - заяц - тигр; трава - мышь(птица)- сова.

В18

Сложение экосистем — динамический процесс. Существует динамика экосистем. Важно значение имеют сукцессии биоценоза и экосистем. В экосистемах постоянно происходят изменения в состоянии и жизнедеятельности их членов и соотношении популяций. Многообразные изменения, происходящие в любом сообществе, относят к двум основным типам: циклические и поступательные.

Циклические изменения экосистем

Циклические изменения сообществ отражают суточную, сезонную и многолетнюю периодичность внешних условий и проявления эндогенных ритмов организмов. Суточная динамика экосистем связана главным образом с ритмикой природных явлений и носит строго периодический характер. Нами уже было рассмотрено, что в каждом биоценозе имеются группы организмов, активность жизни у которых приходится на разное время суток. Одни активны днем, другие — ночью. Отсюда в составе и в соотношении отдельных видов биоценоза той или иной экосистемы происходят периодические изменения, так как отдельные организмы на определенное время выключаются из него. Суточную динамику биоценоза обеспечивают как животные, так и растения. Как известно, у растений в течение суток изменяются интенсивность и характер физиологических процессов — ночью не происходит фотосинтез, нередко у растений цветки раскрываются только в ночные часы и опыляются ночными животными, другие приспособлены к опылению днем. Суточная динамика в биоценозах, как правило, выражена тем сильнее, чем значительнее разница температур, влажности и других факторов среды днем и ночью.

Более значительные отклонения в биоценозах наблюдаются при сезонной динамике. Это обусловлено биологическими циклами организмов, которые зависят от сезонной цикличности явлений природы. Так, смена времени года значительное влияние оказывает на жизнедеятельность животных и растений (спячка, зимний сон, диапауза и миграции у животных; периоды цветения, плодоношения, активного роста, листопада и зимнего покоя у растений). Сезонной изменчивости подвержена нередко и ярусная структура биоценоза. Отдельные ярусы растений в соответствующие сезоны года могут полностью исчезать, например, состоящий из однолетников травянистый ярус. Длительность биологических сезонов в разных широтах неодинакова. В связи с этим сезонная динамика биоценозов арктической, умеренной и тропической зон различна. Она выражена наиболее четко в экосистемах умеренного климата и в северных широтах. Многолетняя изменчивость является нормальной в жизни любого биоценоза. Так, количество осадков, выпадающих в Барабинской лесостепи, резко колеблется по годам, ряд засушливых лет чередуется с многолетним периодом обилия осадков. Тем самым оказывается существенное влияние на растения и животных. При этом происходит выработка экологических ниш — функциональное размежевание в возникающем множестве или его дополнение при малом разнообразии. Многолетние изменения в составе биоценозов повторяются и в связи с периодическими изменениями общей циркуляции атмосферы, в свою очередь, обусловленной усилением или ослаблением солнечной активности.

В процессе суточной и сезонной динамики целостность биоценозов обычно не нарушается. Биоценоз испытывает лишь периодические колебания качественных и количественных характеристик.

Поступательные изменения экосистем

Поступательные изменения в экосистеме приводят в конечном итоге к смене одного биоценоза другим, с иным набором господствующих видов. Причинами подобных смен могут являться внешние по отношению к биоценозу факторы, действующие длительное время в одном направлении, например увеличивающееся загрязнение водоемов, возрастающее в результате мелиорации иссушение болотных почв, усиленный выпас скота и т. д. Данные смены одного биоценоза другим называют экзогенети-ческими. В том случае, когда усиливающее влияние фактора приводит к постепенному упрощению структуры биоценоза, обеднению их состава, снижению продуктивности, подобные смены называют дигрессивными или дигрессиям?.

Эндогенетические смены возникают в результате процессов, которые происходят внутри самого биоценоза. Последовательная смена одного биоценоза другим называется экологической сукцессией (от лат. succession — последовательность, смена). Сукцессия является процессом саморазвития экосистем. В основе сукцессии лежит неполнота биологического круговорота в данном биоценозе. Известно, что живые организмы в результате жизнедеятельности меняют вокруг себя среду, изымая из нее часть веществ и насыщая ее продуктами метаболизма. При сравнительно длительном существовании популяций они меняют свое окружение в неблагоприятную сторону и как результат — оказываются вытесненными популяциями других видов, для которых вызванные преобразования среды оказываются экологически выгодными. В биоценозе происходит таким образом смена господствующих видов. Здесь четко прослеживается правило (принцип) экологического дублирования (рис. 12.35). Длительное существование биоценоза возможно лишь в том случае, если изменения среды, вызванные деятельностью одних живых организмов благоприятны для других, с противоположными требованиями.

На основе конкурентных взаимодействий видов в ходе сукцессии происходит постепенное формирование более устойчивых комбинаций, соответствующих конкретным абиотическим условиям среды. Пример сукцессии, приводящей к смене одного сообщества другим, — зарастание небольшого озера с последующим появлением на его месте болота, а затем леса.

Типы сукцессионных смен.

Выделяют два главных типа сукцессионных смен: 1 — с участием автотрофного и гетеротрофного населения; 2 — с участием только гетеротрофов. Сукцессии второго типа совершаются лишь в таких условиях, где создается предварительный запас или постоянное поступление органических соединений, за счет которых и существует сообщество: в кучах или буртах навоза, в разлагающейся растительной массе, в загрязненных органическими веществами водоемах и т. д. 

Процесс сукцессии.

По Ф. Клементсу (1916), процесс сукцессии состоит из следующих этапов: 1. Возникновение незанятого жизнью участка. 2. Миграция на него различных организмов или их зачатков. 3. Приживание их на данном участке. 4. Конкуренции их между собой и вытеснение отдельных видов. 5. Преобразование живыми организмами местообитания, постепенной стабилизации условий и отношений. Сукцессии со сменой растительности могут быть первичными и вторичными.  Первичная сукцессия процесс развития и смены экосистем на незаселенных ранее участках, начинающихся с их колонизации. Классический пример — постоянное обрастание голых скал с развитием в конечном итоге на них леса. Так, в первичных сукцессиях, протекающих на скалах Уральских гор, различают следующие этапы. 1. Поселение эндолитических и накипных лишайников, сплошь покрывающих каменистую поверхность. Накипные лишайники несут своеобразную микрофлору и содержат богатую фауну простейших, коловраток, нематод. Мелкие клещи — сапрофаги и пер-вичнобескрылые насекомые обнаруживаются сначала только в трещинах. Активность всего населения прерывиста, отмечается главным образом после выпадения осадков в виде дождя или смачивания скал влагой туманов. Данные сообщества организмов называют пионерными. 2. Преобладание листоватых лишайников, которые постепенно образуют сплошной ковер. Под круговинками лишайников в результате выделяемых ими кислот и механического сокращения слоевищ при высыхании образуются выщербленности, идет отмирание слоевищ и накопление детрита. В большом количестве под лишайниками встречаются мелкие членистоногие: коллемболы, панцирные клещи, личинки комаров-толкунчиков, сеноеды и другие. Образуется микрогоризонт, состоящий из их экскрементов. 3. Поселение литофильных мхов Hedwidia u Pleurozium schreberi. Под ними погребаются лишайники и подлишайниковые пленочные почвы. Ризоиды мхов здесь прикрепляются не к камню, а к мелкозему, который имеет мощность не менее 3 см. Колебания температуры и влажности под мхами в несколько раз меньше, чем под лишайниками. Усиливается деятельность микроорганизмов, увеличивается разнообразие групп животных. 4. Появление гипновых мхов и сосудистых растений. В разложении растительных остатков и формировании почвенного профиля постепенно уменьшается роль мелких членистоногих и растет участие более крупных беспозвоночных — сапрофагов: энхитреид, дождевых червей, личинок насекомых. 5. Заселение крупными растениями, способствующее дальнейшему накоплению и образованию почвы. Ее слой оказывается достаточным для развития кустарников и деревьев. Их опадающие листья и ветви не дают расти мхам и большинству других мелких видов, начавших сукцессию. Так, постепенно на изначально голых скалах идет процесс смены лишайников мхами, мхов травами и наконец лесом. Такие сукцессии в геоботанике называют экогенетически-ми, так как они ведут к преобразованию самого местообитания. Вторичная сукцессия — это восстановление экосистемы, когда-то уже существовавшей на данной территории. Она начинается в том случае, если уже в сложившемся биоценозе нарушены установившиеся взаимосвязи организмов в результате извержения вулкана, пожара, вырубки, вспашки и т. д. Смены, ведущие к восстановлению прежнего биоценоза, получили название в геоботанике демутационных. Примером может служить динамика видового, разнообразия на острове, Кракатау после полного уничтожения аборигенной флоры и фауны вулканическим взрывом в 1893 году 

Другой пример, вторичная сукцессия сибирского темно-хвойного леса (пихтово-кедровой тайги) после опустошительного лесного пожара (рис. 12.38). На более выжженных местах из спор, занесенных ветром, появляются мхи-пионеры: через 3—5лет после пожара наиболее обильны «пожарный мох» —Funaria hygrometrica, Geratodon; purpureus, и др. Из высших растений весьма быстро заселяют гари Иван-чай (Chamaenerion angustifolium), который уже через 2—3 месяца обильно цветет на пожарище, а также вейник наземный (Calamagrostis epigeios) и другие виды.

В19

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]