Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
К ГОСЭКЗАМЕНУ ПО ХИМИИ (бакалавры).doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
1.26 Mб
Скачать

Электроды первого рода

Электроды первого рода представляют собой металл или металлоид (то есть неметалл с электронной проводимостью), погруженные в раствор своей соли. Электроды первого рода можно схематически представить в виде Мn+ М (если электрод  металл) или в виде МеnМе (если электрод  металлоид). Электродную реакцию записывают как

Mn+ + ne  M или Me + ne  Men ;

= + ln = + 2,303 lg ;

= + ln =  2,303 lg

(так как активность чистого твердого вещества при заданной температуре постоянна и можно принять ее условно равной 1).

Из уравнений следует, что потенциал электрода первого рода зависит от активности лишь одного вида ионов; эти ионы называются потенциалоопределяющими. В случае металлических электродов первого рода такими ионами являются катионы металла, а в случае металлоидных электродов  анионы металлоида. Примеры металлических электродов: металл, погруженный в раствор своей соли (Ag в растворе AgNO3  Ag+ Ag ; Cu в растворе CuSO4  Cu2+ Cu). Пример металлоидных электродов первого рода  селеновый электрод Se2– Se.

Металлические электроды первого рода имеют большое практическое значение и легче реализуются, чем металлоидные.

Следует отметить, что в водных растворах нельзя реализовать как электроды первого рода электроды, обратимые по отношению к ионам щелочных и щелочноземельных металлов, так как в этом случае вместо обратимой реакции разряда-ионизации металла на электроде идет необратимый процесс разложения воды с выделением водорода:

Na + H2O = Na+ + 1/2 H2 + OH .

Причина – большое отрицательное значение потенциалов этих электродов.

Электроды второго рода

Электроды второго рода представляют собой полуэлементы, состоящие из металла, покрытого слоем его труднорастворимого соединения (соли, оксида, гидроксида) и погруженного в раствор, содержащий тот же анион, что и труднорастворимое соединение электродного металла. Схематически электрод второго рода можно представить как An MA M , а протекающую в нем реакцию

MA + ne = M + An ;

= + 2,303 lg =  2,303 lg

(учитывая, что активности металла и твердого соединения МА постоянны).

Таким образом, потенциал электрода второго рода определяется активностью анионов труднорастворимого соединения электродного металла. Однако электроды второго рода обратимы и по отношению к катионам электродного металла:

ПРМА = ;

=  2,303 lg ПРМА + 2,303 lg =

+ 2,303 lg = .

Из сопоставления потенциалов соответствующих электродов первого и второго рода можно найти ПР труднорастворимых солей.

Потенциалы электродов второго рода легко воспроизводимы и устойчивы, поэтому эти электроды часто применяют в качестве электродов сравнения, по отношению к которым измеряют потенциалы других электродов. Наиболее важны в практическом отношении каломельные, ртутно-сульфатные, хлоридсеребряные, ртутнооксидные и сурьмяные электроды.

КАЛОМЕЛЬНЫЙ ЭЛЕКТРОД. Это ртуть, покрытая пастой из смеси каломели со ртутью, находящаяся в контакте с раствором KCl:

ClHg2Cl2 Hg .

Электродная реакция: Hg2Cl2 + 2e = Hg + 2 Cl ;

Eкал = Eокал  2,303 lg .

При 25оС Eкал = + 0,2678  0,059 lg .

Eкал определяется активностью ионов Cl. Наиболее часто употребляются каломельные полуэлементы, в которых концентрация KCl  насыщенный раствор, 1.0 М или 0.1 М. Каломельные электроды, особенно насыщенный, удобны тем, что диффузионный потенциал, возникающий на границе данного раствора с насыщенным KCl, незначителен и во многих случаях его можно не принимать во внимание.

РТУТНОСУЛЬФАТНЫЙ ЭЛЕКТРОД SO42– Hg2SO4 Hg аналогичен каломельному, ртуть покрыта слоем пасты из ртути и сульфата ртути (I), а в качестве раствора используется H2SO4. При 25оС

Eрт.с. = + 0,6156  0,0296 lg .

ХЛОРИДСЕРЕБРЯНЫЙ ЭЛЕКТРОД представляет собой систему

Cl AgCl Ag ;

Eхс = Eохс  2,303 lg = + 0,2224  0,059 lg .

Ртутно-сульфатный и хлоридсеребряный электроды целесообразно применять в тех случаях, когда исследуемый полуэлемент содержит в качестве электролита либо серную кислоту или сульфаты, либо соляную кислоту или хлориды. Чтобы уменьшить величину диффузионного потенциала, концентрацию этих электролитов в электродах сравнения следует брать такую же, как и в исследуемых полуэлементах.

МЕТАЛЛОКСИДНЫЕ ЭЛЕКТРОДЫ интересны тем, что здесь в роли анионов труднорастворимого соединения электродного металла выступают ионы гидроксида. К ним относятся, например, ртутнооксидный и сурьмяный электроды:

OHHgO Hg и OHSb2O3 Sb .

Уравнения электродных реакций и потенциалов этих электродов:

HgO + H2O + 2e = Hg + 2OH Eрт.окс. = Eорт.окс.  2,303 lg ;

Sb2O3 + 3H2O + 6e = 2Sb + 6OH Eсурьм. = Eосурьм.  2,303 lg .

Уравнения для электродного потенциала получены при допущении, что постоянны активности не только соответствующих металлов и их оксидов, но и воды, также принимающей участие в электродной реакции.

Металлоксидные электрода второго рода, как и металлсолевые электроды второго рода, обратимы по отношению не только к ионам гидроксила, но и к ионам электродного металла. Кроме того, они обратимы и по отношению к ионам водорода, потому что ионное произведение воды при заданной Т постоянно для любого водного раствора электролита.

Металлоксидные электроды можно применять как электроды сравнения в любых растворах кислот и щелочей, однако ртутнооксидный электрод вследствие заметной растворимости оксидов ртути в кислотах можно рекомендовать лишь для растворов с рН  7. Сурьмяный электрод из-за неустойчивости состава его поверхностного оксида применять как электрод сравнения нельзя; он используется в качестве индикаторного электрода для приближенных определений рН в умеренно кислых и нейтральных растворах.