Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
К ГОСЭКЗАМЕНУ ПО ХИМИИ (бакалавры).doc
Скачиваний:
1
Добавлен:
01.05.2025
Размер:
1.26 Mб
Скачать

Влияние природы растворителя на электропроводность

Электропроводность растворов электролитов зависит в первую очередь от природы электролита и растворителя. При переходе от воды к другим растворителям изменяются величина электропроводности и, в меньшей степени, число переноса. Основными свойствами растворителя, обусловливающими характер изменения электропроводности, являются его вязкость и диэлектрическая проницаемость.

Повышение вязкости снижает электропроводность. Количественное выражение этого эффекта дается правилом Вальдена – Писаржевского:

оо = const

(о – мольная электропроводность электролита, экстраполированная до нулевой концентрации; о – вязкость чистого растворителя). Правило Вальдена – Писаржевского приближенно и оправдывается лишь для растворителей с близкими величинами диэлектрических проницаемостей.

Величина диэлектрической проницаемости растворителя влияет, во-первых, на абсолютную величину электропроводности (вспомним, что образование ионов в растворе в результате диссоциации происходит только в растворителях с высокой диэлектрической проницаемостью) и, во-вторых, заметно влияет на характер изменения электропроводности с концентрацией.

Зависимость пожвижности ионов от температуры

Предельная подвижность ионов, а также удельная электропроводность электролитов всегда увеличиваются с повышением температуры (в противоположность электропроводности металлов, которая уменьшается с повышением температуры). Температурный коэффициент подвижности оказывается довольно большим; при нагревании раствора на 1oС подвижность, а следовательно, и электропроводность возрастают примерно на 2 %. Наибольший температурный коэффициент характерен для ионов с относительно малой подвижностью и наоборот. Наличие положительного температурного коэффициента подвижности ионов объясняется уменьшением вязкости с температурой.

Так как  = о+ + о, то эквивалентная электропроводность при бесконечном разведении с температурой всегда возрастает.

При конечной концентрации связь  с подвижностью несколько сложнее. Для слабого электролита  = (+ + ). Если с повышением температуры подвижности ионов возрастают, то степень диссоциации может и уменьшаться, поскольку диэлектрическая проницаемость раствора при нагревании уменьшается, то есть силы взаимодействия между ионами увеличиваются. Следовательно, кривая зависимости электропроводности от температуры может иметь максимум. Аналогичное явление наблюдается и в сильных электролитах.

7. Гальванические элементы. ЭДС. Связь ЭДС с константой равновесия реакции. Электродный потенциал. Диффузионный потенциал. Термодинамический вывод формулы Нернста для электродного потенциала. Стандартный электродный потенциал.

При прохождении электрического тока через электролит на поверхности электродов протекают электрохимические реакции. Протекание электрохимических реакций может порождаться внешним источником тока. Возможно и обратное явление: электрохимические реакции, протекающие на двух электродах, опущенных в электролит, порождают электрический ток, причем реакции идут только при замкнутой цепи (при прохождении тока).

Электрохимическим (или гальваническим) элементом называется устройство для получения электрического тока за счет электрохимических реакций. Простейший электрохимический элемент состоит из двух металлических электродов (проводников первого рода), опущенных в электролит (проводник второго рода) и соединенных между собой металлическим контактом. Несколько электрохимических элементов, соединенных последовательно, образуют электрохимическую цепь.

Важнейшей количественной характеристикой электрохимического элемента является электродвижущая сила (ЭДС, Е), которая равна разности потенциалов правильно разомкнутого элемента (такого, у которого к конечным электродам элемента присоединены проводники первого рода из одного и того же материала).

Если при прохождении электрического тока в разных направлениях на поверхности электрода протекает одна и та же реакция, но в противоположных направлениях, то такие электроды, а также элемент или цепь, составленные из них, называются обратимыми. ЭДС обратимых элементов является их термодинамическим свойством, т.е. зависит только от Т, Р, природы веществ, составляющих электроды и растворы, и концентрации этих растворов. Пример обратимого элемента  элемент Даниэля-Якоби:

() Cu Zn ZnSO4 CuSO4 Cu (+)

в котором каждый электрод обратим. При работе элемента идут следующие реакции: Zn  Zn2+ + 2e , Cu2+ + 2e  Cu. При пропускании тока бесконечно малой силы от внешнего источника на электродах протекают обратные реакции.

Пример необратимого элемента  элемент Вольта:

() Zn  H2SO4 Cu (+)

При работе элемента протекают реакции: Zn  Zn2+ + 2e , 2H+ + 2e  H2 . При пропускании тока от внешнего источника электродными реакциями будут: 2H+ + 2e  H2 , Cu  Cu2+ + 2e .

ЭДС электрохимического элемента является величиной положительной, т.к. она соответствует определенному самопроизвольно протекающему процессу, дающему положительную работу. Обратному процессу, который не может протекать самостоятельно, отвечала бы отрицательная ЭДС. При составлении цепи электрохимических элементов процесс в одном из элементов можно направить так, чтобы он сопровождался затратой работы извне (несамопроизвольный процесс), используя для этого работу другого элемента цепи, в котором идет самопроизвольный процесс. Суммарная ЭДС любой цепи равна алгебраической сумме положительных и отрицательных величин. Поэтому очень важно при записи схемы цепи учитывать знаки ЭДС, пользуясь принятыми правилами.

ЭДС электрохимической цепи считается положительной, если при записи цепи правый электрод заряжен положительно относительно левого (катионы при работе цепи проходят в растворе от электрода, записанного слева, по направлению к электроду, записанному справа, и в этом же направлении движутся во внешней цепи электроны).

Пусть в электрохимической системе обратимо и изотермически протекает реакция:

AA + BB + ...  nF  LL + MM + ... 

Свяжем ЭДС элемента с константой равновесия реакции, протекающей в элементе. Уравнение изотермы химической реакции:

G = RT lnKa  RT

E =  = lnKa

Первый член правой части уравнения при заданных Р, Т  величина постоянная, его можно обозначить через Ео. Еостандартная ЭДС элемента (электрохимической системы), т.е. ЭДС при всех ai = 1.

Е = Ео + ln = Eo + 2,303 lg

Т.о., ЭДС электрохимической системы является функцией активностей участников электрохимической реакции. Вышеприведенные уравнения дают возможность вычислить величины G и Ка по экспериментальным значениям Е и, наоборот, рассчитывать Е, зная термодинамические характеристики химической реакции.