
- •Электрические измерения неэлектрических величин
- •Часть 1
- •1. Основы электрических измерений
- •1.1. Основные понятия
- •1.1.1. Основные термины и определения.
- •1.1.2. Погрешности измерений.
- •Поскольку истинное значение Xи неизвестно, погрешность находят по приближенной формуле
- •1.1.3. Формы представления результатов измерений.
- •1.2. Метрологические характеристики средств измерительной техники.
- •1.2.1. Основные термины и определения.
- •1.2.2. Погрешности средств измерений.
- •1.2.3. Погрешности измерительных преобразователей.
- •1.2.4. Аддитивная, мультипликативная и нелинейная составляющие погрешности.
- •1.2.5. Основная и дополнительные погрешности.
- •1.2.6. Классы точности средств измерений.
- •1.2.7. Статическая модель средства измерений.
- •1.2.8. Суммирование погрешностей.
- •1.2.9. Обработка прямых измерений.
- •1.2.10. Обработка косвенных измерений.
- •2. Методы измерений электрических величин
- •2.1. Измерение напряжений и токов.
- •2.1.1. Общие сведения.
- •2.1.2. Измерение постоянных напряжений электромеханическими приборами.
- •2.1.3. Измерение постоянных токов электромеханическими приборами.
- •2.1.4. Измерение переменных токов и напряжений электромеханическими приборами.
- •2.1.5. Измерение постоянных напряжений аналоговыми электронными вольтметрами.
- •2.1.6. Измерение переменных напряжений аналоговыми электронными вольтметрами.
- •2.1.7. Измерение напряжений компенсаторами.
- •2.1.8. Измерение напряжений цифровыми вольтметрами.
- •2.1.9. Измерение параметров сигналов электронно-лучевыми и светолучевыми осциллографами
- •Электронно-лучевые осциллографы
- •Структурная схема осциллографа
- •Основные характеристики и виды электронных осциллографов
- •2.2. Измерение параметров электрических цепей
- •2.2.1. Измерение сопротивлений постоянному току.
- •2.2.2. Измерение параметров электрических цепей на переменном токе.
- •Комментарии к Главе 2
- •Задание № 1.
- •Список используемых сокращений
- •Г. Саров – 2010 г.
- •Цели освоения учебной дисциплины « Электрические измерения неэлектрических величин»
- •Место учебной дисциплины в структуре ооп впо
- •Структура и содержание учебной дисциплины (модуля)
- •4.1. Объём дисциплины и виды учебной работы (часы):
- •4. Содержание дисциплины
- •4.1. Тематический план.
- •План лекционных занятий (6 семестр)
- •1 Тема. Вводная лекция.
- •2 Тема. Метрологические характеристики средств измерительной техники
- •3 Тема. Методы измерений электрических величин.
- •8 Тема. Измерение параметров электрических цепей
- •10 Тема. Емкостные(электростатические) преобразователи
- •Программа практических занятий (6 семестр)
- •План лекционных занятий (7 семестр)
- •1 Тема. Методы измерений неэлектрических величин.
- •4 Тема. Методы электрических измерений неэлектрических
- •5 Тема. Методы регистрации быстропротекающих процессов в динамических исследованиях.
- •9 Тема. Методы непрерывной регистрации профилей давления
- •11 Тема Лазерные доплеровские измерительные системы и их применение в ударно-волновых исследованиях.
- •Программа практических занятий (7 семестр)
1.2.6. Классы точности средств измерений.
Полная информация о пределах допускаемых основной и дополнительных погрешностей конкретного средства измерений приводится в его техническом описании. Однако для многих распространенных типов средств измерений информацию о пределах допускаемых основных погрешностей можно получить непосредственно из обозначения класса точности.
Пример 1. Класс точности обозначен одним положительным числом c. Это означает, что для данного средства измерений основная приведенная погрешность γо (выраженная в процентах) не превышает по абсолютному значению c %:
,
(1.30)
где γо,п – предел допускаемой основной приведенной погрешности, Δо,п - предел допускаемой основной абсолютной погрешности, Xн – нормирующее значение. Зная Xн, из (1.30) нетрудно найти Δо,п ≥ |Δо|, где Δо – основная абсолютная погрешность средства измерений.
Из (1.30) видно, что для данного средства измерений предел допускаемой основной абсолютной погрешности не зависит от значения измеряемой величины.
Пусть имеется вольтметр, имеющий класс точности 0,5 и диапазон измерений от 0 до 300 В. Для него c = 0,5 и Uн = 300 В. По формуле (1.30)
Δо,п = 0,01cUн = 1,5 В. Для верхнего и нижнего пределов основной абсолютной погрешности этого вольтметра можно записать: Δо,п = ± 1,5 В независимо от его показаний.
Пример 2. Класс точности обозначен так: c/d, где c и d – некоторые положительные числа, причем всегда c > d. Это означает, что для данного средства измерений основная относительная погрешность δо (выраженная в процентах) не превышает по абсолютному значению δо,п – предела допускаемой основной относительной погрешности, причем
,
(1.31)
где X – показание средства измерений., а Xк – конечное значение диапазона измерений. Зная Xк и учитывая, что δо и Δо связаны соотношением
,
получим:
.
(1.32)
Из (1.32) видно, что для данного средства измерений предел допускаемой основной абсолютной погрешности линейно возрастает с ростом измеряемой величины X, причем при X = 0 Δо,п = Δо,п,мин = 0,01dXк, а при X = Xк Δо,п = Δо,п,макс = 0,01c.
Пусть имеется цифровой вольтметр, предназначенный для измерения напряжений постоянного тока, имеющий класс точности 0,5/0,2 и диапазон измерений от –300 до 300 В. Для него c = 0,5, d = 0,2 и Uк = 300 В. Предположим, что показание вольтметра X = –200 В.
По формуле (1.31) Δо,п = 0,01[(0,5 – 0,2)200 + 0,2·300] = 1,2 В. Для верхнего и нижнего пределов основной абсолютной погрешности этого вольтметра при U = –200 В можно записать: Δо,п = ± 1,2 В. {1К19}
П
ример
3.
Класс точности обозначен так: , где c
– положительное число. Это означает,
что для данного средства измерений
основная относительная погрешность δо
(выраженная в процентах) не превышает
по абсолютному значению δо,п
– предела
допускаемой основной относительной
погрешности, причем δо,п
= c.
Пусть имеется катушка индуктивности L = 100 мГн класса точности
Так как основная относительная погрешность не превышает по модулю 1 %, то основная абсолютная погрешность не превышает по модулю 0,01·100 мГн = 1 мГн. Для верхнего и нижнего пределов основной абсолютной погрешности этой катушки индуктивности можно записать: Δо,п = ± 1 мГн.
В общем случае информацию о пределах допускаемых основных и дополнительных погрешностей нельзя получить непосредственно из обозначения класса точности; необходимо обратиться к техническому описанию конкретного средства измерений, так как нормирование этих погрешностей может осуществляться различными способами.
В качестве примера рассмотрим один из распространенных способов нормирования пределов дополнительной погрешности вольтметров, вызванной выходом температуры окружающего воздуха за пределы нормальной области значений:
Δд,п = 0,1·Δо,п ·|Θ – 20| , (1.33)
где Δо,п и Δд,п - пределы основной и дополнительной погрешностей, Θ – температура окружающего воздуха (°C), находящаяся в рабочей области значений.