
- •Электрические измерения неэлектрических величин
- •Часть 1
- •1. Основы электрических измерений
- •1.1. Основные понятия
- •1.1.1. Основные термины и определения.
- •1.1.2. Погрешности измерений.
- •Поскольку истинное значение Xи неизвестно, погрешность находят по приближенной формуле
- •1.1.3. Формы представления результатов измерений.
- •1.2. Метрологические характеристики средств измерительной техники.
- •1.2.1. Основные термины и определения.
- •1.2.2. Погрешности средств измерений.
- •1.2.3. Погрешности измерительных преобразователей.
- •1.2.4. Аддитивная, мультипликативная и нелинейная составляющие погрешности.
- •1.2.5. Основная и дополнительные погрешности.
- •1.2.6. Классы точности средств измерений.
- •1.2.7. Статическая модель средства измерений.
- •1.2.8. Суммирование погрешностей.
- •1.2.9. Обработка прямых измерений.
- •1.2.10. Обработка косвенных измерений.
- •2. Методы измерений электрических величин
- •2.1. Измерение напряжений и токов.
- •2.1.1. Общие сведения.
- •2.1.2. Измерение постоянных напряжений электромеханическими приборами.
- •2.1.3. Измерение постоянных токов электромеханическими приборами.
- •2.1.4. Измерение переменных токов и напряжений электромеханическими приборами.
- •2.1.5. Измерение постоянных напряжений аналоговыми электронными вольтметрами.
- •2.1.6. Измерение переменных напряжений аналоговыми электронными вольтметрами.
- •2.1.7. Измерение напряжений компенсаторами.
- •2.1.8. Измерение напряжений цифровыми вольтметрами.
- •2.1.9. Измерение параметров сигналов электронно-лучевыми и светолучевыми осциллографами
- •Электронно-лучевые осциллографы
- •Структурная схема осциллографа
- •Основные характеристики и виды электронных осциллографов
- •2.2. Измерение параметров электрических цепей
- •2.2.1. Измерение сопротивлений постоянному току.
- •2.2.2. Измерение параметров электрических цепей на переменном токе.
- •Комментарии к Главе 2
- •Задание № 1.
- •Список используемых сокращений
- •Г. Саров – 2010 г.
- •Цели освоения учебной дисциплины « Электрические измерения неэлектрических величин»
- •Место учебной дисциплины в структуре ооп впо
- •Структура и содержание учебной дисциплины (модуля)
- •4.1. Объём дисциплины и виды учебной работы (часы):
- •4. Содержание дисциплины
- •4.1. Тематический план.
- •План лекционных занятий (6 семестр)
- •1 Тема. Вводная лекция.
- •2 Тема. Метрологические характеристики средств измерительной техники
- •3 Тема. Методы измерений электрических величин.
- •8 Тема. Измерение параметров электрических цепей
- •10 Тема. Емкостные(электростатические) преобразователи
- •Программа практических занятий (6 семестр)
- •План лекционных занятий (7 семестр)
- •1 Тема. Методы измерений неэлектрических величин.
- •4 Тема. Методы электрических измерений неэлектрических
- •5 Тема. Методы регистрации быстропротекающих процессов в динамических исследованиях.
- •9 Тема. Методы непрерывной регистрации профилей давления
- •11 Тема Лазерные доплеровские измерительные системы и их применение в ударно-волновых исследованиях.
- •Программа практических занятий (7 семестр)
Структурная схема осциллографа
Структурная схема осциллографа приведена на рис. 2.48. Кроме электронно-лучевой трубки VL она содержит канал вертикального отклонения (канал У), канал горизонтального отклонения (канал X), канал управления яркостью (канал Z), а также калибратор амплитуды и длительности. Исследуемое напряжение поступает на входное устройство канала Y, которое включает в себя аттенюатор, позволяющий при необходимости ослабить сигнал и согласовать сопротивление канала с сопротивлением источника сигнала. Усилители А1 и А2 являются предварительным и оконечным усилителями соответственно. Линия задержки ЕТ используется при работе осциллографа в импульсном режиме. Она позволяет подавать исследуемый импульсный сигнал на пластины Y с задержкой относительно начала периода пилообразного напряжения. Это дает возможность наблюдать фронт исследуемого импульса неискаженным. Без линии задержки не удалось бы наблюдать часть импульса, которая приходится на время, необходимое для формирования напряжения развертки.
Канал X служит для формирования и (или) усиления напряжения, поступающего затем на горизонтально отклоняющие пластины и вызывающего горизонтальное перемещение луча. Канал X содержит предварительный и оконечный усилители (A3 и А4 соответственно), цепь синхронизации и запуска, а также генератор развертки G. Переключатель S1 служит для подачи синхронизирующего напряжения с канала Y (внутренняя синхронизация) или со входа X (внешняя синхронизация), Если переключатели S1 и S2 находятся в левом положении, то генератор развертки отключается и на пластины X поступает (через усилители А3 и А4) напряжение со входа X.
Канал Z служит для управления яркостью свечения экрана ЭЛТ. Управление производится как вручную, так и автоматически. Например, производится автоматическое подсвечивание прямого хода ждущей развертки. В промежутке между импульсами, запускающими ждущую развертку, яркость пятна снижена во избежание прожигания люминофорного слоя.
Калибратор амплитуды и длительности является источником напряжений с известной амплитудой и длительностью. Эти напряжения подаются с выхода калибратора на вход Y для контроля масштабов (коэффициентов отклонения) по осям Y (В/см, мВ/см или В/деление, мВ/деление) и X (мкс/см, мс/см или с/см). Знание масштабов необходимо для измерения напряжений и интервалов времени, поскольку непосредственно оператору доступно считывание только расстояний (сантиметры, деления) по масштабной сетке на экране. В некоторых современных осциллографах измерение осуществляется автоматически при помощи цифрового устройства. Результат отображается на экране в цифровой форме.
Основные характеристики и виды электронных осциллографов
Электронные осциллографы характеризуются рядом технических и метрологических параметров. К наиболее важным относятся следующие:
калиброванные значения коэффициента отклонения;
полоса пропускания, т.е. диапазон частот, в пределах которого коэффициент усиления канала Y уменьшается на 3 дБ по отношению к некоторой опорной частоте;
диапазон изменения длительности развертки;
входное сопротивление и входная емкость канала Y;
точностные параметры, характеризующие погрешности измерения напряжения и интервалов времени.
При выборе осциллографа следует исходить из характера измеряемого сигнала (гармонический или импульсный) и его вероятных параметров (ширина спектра, граничные частоты, частота следования, скважность, амплитуда напряжения и т.д.).
Осциллографы подразделяются на универсальные, скоростные, стробоскопические, запоминающие, специальные. Наиболее употребительными являются универсальные осциллографы (в ГОСТ обозначение С1). Они позволяют проводить исследования электрических сигналов в широком диапазоне частот, амплитуд и длительностей сигналов. Полоса пропускания достигает 200—350 МГц, диапазон амплитуд от единиц милливольт до сотен волы. Возможно измерение длительностей импульсов от нескольких наносекунд до секунд.
Скоростные осциллографы (обозначение С7) служат для исследования гармонических и импульсных сигналов (включая однократные импульсы) с характерными временами, составляющими доли и единицы наносекунд в реальном масштабе времени. Быстродействие достигается благодаря использованию ЭЛТ с бегущей волной. Полоса пропускания скоростных осциллографов достигает 5 ГГц.
Стробоскопические осциллографы (обозначение С7) используют стробоскопическое преобразование масштаба времени. Их полоса пропускания достигает 10 ГГц. При помощи осциллографов этого вида можно исследовать повторяющиеся сигналы с амплитудой несколько милливольт и длительностью несколько пикосекунд.
Запоминающие осциллографы (обозначение С8) применяются для исследования медленных процессов и однократных импульсов. Запоминание осуществляется при помощи специальных ЭЛТ. Длительность измеряемых интервалов времени достигает десятков секунд. Время сохранения - от нескольких часов до нескольких суток.
Специальные осциллографы (С9) в основном предназначены для исследования телевизионных и радиолокационных сигналов.
Для одновременного исследования нескольких сигналов используют многолучевые осциллографы. Обычно они имеют два канала вертикального отклонения, однако выпускаются также осциллографы с большим числом каналов (до пяти).
В последнее время все большее распространение получают электронные осциллографы с цифровой обработкой сигнала. В таких приборах аналоговый блок, представляющий собой обычный (аналоговый) осциллограф, дополнен блоком дискретизации аналогового сигнала и цифровым блоком, В состав последнего входят микропроцессор, который управляет процессами преобразования сигналов и процедурой измерения, а также клавиатура, позволяющая вводить необходимые программы. Введение цифровой обработки значительно расширило возможности осциллографа. Появилась возможность автоматизации управления его работой, увеличения производительности. Измеряемая информация может быть подвергнута необходимой обработке, упорядочению и запоминанию. Параметры сигнала в цифровой форме отображаются на экране ЭЛТ. Массивы информации могут быть представлены на экране в виде гистограмм, графиков, таблиц и т.д. По желанию оператора можно изменить масштаб, вычленить и растянуть какую-либо часть осциллограммы, наложить друг на друга или одновременно представить на экране несколько зависимостей. Автоматическая калибровка в ходе измерения, коррекция погрешностей, уменьшение влияния помех благодаря усреднению сигнала за большое число периодов приводит к существенному повышению точности измерений. Возможность вычисления и отображения на экране преобразования Фурье исследуемого сигнала, дифференцирования, интегрирования и других операций качественно меняют характер получаемой информации.
Светолучевые осциллографы. Светолучевые осциллографы используются для исследования электрических сигналов с верхней частотой, не превышающей 30 кГц. Достоинством этих приборов является простота устройства, возможность одновременной регистрации большого числа (обычно 12 или 24) процессов.
Светолучевой осциллограф состоит из магнитного блока с осциллографическими гальванометрами (ОГ), оптической системы, развертывающей системы, отметчика времени и блока питания.
Осциллографический гальванометр представляет собой укрепленную на растяжках подвижную рамку магнитоэлектрического измерительного механизма, заключенную в кожух из магнитного материала. На кожухе укреплены магнитно-мягкие полюсные наконечники. ОГ вставляются в специальные гнезда, являющиеся воздушными зазорами магнитопровода единого постоянного магнита. Таким образом, все рамки находятся в постоянном магнитном поле. При прохождении по рамке исследуемого тока происходит ее поворот, как и в обычном
Схема общего устройства осциллографа приведена на рис. 2.49. Луч света от источника 1 проходит через узкую щель 2 и призму 3 и отражается от зеркальца 4. Затем он попадает на призму 5, где разделяется на две части. Часть луча проходит поверх призмы 5 и концентрируется с помощью цилиндрической линзы 6 в точку на фотопленке 7. Вторая часть луча отклоняется призмой 5 и направляется на зеркальный многогранный барабан 8, отражаясь от которого, падает на экран 9. Если пленка 7 и зеркальный барабан 8 находятся в покое, то при колебаниях зеркала от четырех ОГ световое пятно описывает на пленке в поперечном направлении и на экране прямую линию. Для наблюдения и фотографирования исследуемого процесса во времени надо развернуть движение луча по оси времени, Для этого пленку протягивают, а зеркальный барабан приводят во вращение. Если скорость вращения барабана такова, что луч перемещается по одной грани в течение времени, равного целому числу периодов исследуемого тока, то кривая на экране неподвижна. Лентопротяжный механизм и барабан приводятся двигателем.
Следует отметить, что устройства для визуального наблюдения отсутствуют во многих современных светолучевых осциллографах, которые осуществляют только функцию регистрации на фотоносителе.
Для задания масштаба времени используют специальные отметчики, с помощью которых на носитель наносятся метки, разделенные известными временными интервалами. Отметчики времени обычно строятся на основе электромеханических устройств. Функцию отметчика может выполнять также специально выделенный для этой цели ОГ, на вход которого подаются импульсы с известным периодом, регистрируемые одновременно с исследуемым сигналом.
Область применения светолучевых осциллографов ограничивается инерционностью подвижной части. Без существенных искажений этим прибором можно регистрировать синусоидальные токи и напряжения с частотами не свыше 30 кГц. Светолучевые осциллографы применяются при исследовании электрических машин и аппаратов, в геологии при поисках ископаемых сейсмическими методами, для регистрации землетрясений и т.п.
ВОПРОСЫ к разделу 2.1
1. Какие измерительные механизмы используются для создания вольтметров? А амперметров?
2. Какие измерительные механизмы используются в цепях постоянного тока, а какие – в цепях переменного тока? Каков их принцип действия?
3. Чем различаются схемы электромеханических амперметров и вольтметров?
4. Как устроены приборы выпрямительной и термоэлектрических систем? Каковы области их применения?
5. В чем преимущества аналоговых электронных вольтметров по сравнению с электромеханическими?
6. Как устроены аналоговые электронные вольтметры? Области их применения?
7. Какие методические погрешности могут возникать при работе с аналоговыми электронными вольтметрами?
8. Каков принцип действия компенсатора постоянного напряжения? За счет чего они обеспечивают высокую точность измерений?
9. Что такое мультиметр? Какие электрические величины измеряются мультиметрами?
10. В чем преимущества цифровых вольтметров перед аналоговыми?
11. Как устроена электронно-лучевая трубка осциллографа?
12. Какие элементы электронно-лучевой трубки составляют электронную пушку?
13. Как устроены электронно-лучевые осциллографы?
14. Как устроен светолучевой осциллограф?