Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ч 1.Уч.метод.пособие ЭИНЭВ.Батьков.doc
Скачиваний:
2
Добавлен:
01.05.2025
Размер:
2.69 Mб
Скачать

Структурная схема осциллографа

Структурная схема осциллогра­фа приведена на рис. 2.48. Кроме электронно-лучевой трубки VL она содержит канал вертикального отклонения (канал У), канал горизон­тального отклонения (канал X), канал управления яркостью (канал Z), а также калибратор амплитуды и длительности. Исследуемое напря­жение поступает на входное устройство канала Y, которое включает в себя аттенюатор, позволяющий при необходимости ослабить сигнал и согласовать сопротивление канала с сопротивлением источника сигнала. Усилители А1 и А2 являются предварительным и оконечным усилителя­ми соответственно. Линия задержки ЕТ используется при работе ос­циллографа в импульсном режиме. Она позволяет подавать исследуемый импульсный сигнал на пластины Y с задержкой относительно начала периода пилообразного напряжения. Это дает возможность наблюдать фронт исследуемого импульса неискаженным. Без линии задержки не удалось бы наблюдать часть импульса, которая приходится на время, необходимое для формирования напряжения развертки.

Канал X служит для формирования и (или) усиления напряжения, поступающего затем на горизонтально отклоняющие пластины и вы­зывающего горизонтальное перемещение луча. Канал X содержит пред­варительный и оконечный усилители (A3 и А4 соответственно), цепь синхронизации и запуска, а также генератор развертки G. Переключа­тель S1 служит для подачи синхронизирующего напряжения с канала Y (внутренняя синхронизация) или со входа X (внешняя синхрониза­ция), Если переключатели S1 и S2 находятся в левом положении, то генератор развертки отключается и на пластины X поступает (через усилители А3 и А4) напряжение со входа X.

Канал Z служит для управления яркостью свечения экрана ЭЛТ. Управление производится как вручную, так и автоматически. Напри­мер, производится автоматическое подсвечивание прямого хода жду­щей развертки. В промежутке между импульсами, запускающими жду­щую развертку, яркость пятна снижена во избежание прожигания люминофорного слоя.

Калибратор амплитуды и длительности является источником напряжений с известной амплитудой и длительностью. Эти напряжения подаются с выхода калибратора на вход Y для контроля масштабов (коэффициентов отклонения) по осям Y (В/см, мВ/см или В/деление, мВ/деление) и X (мкс/см, мс/см или с/см). Знание масштабов необ­ходимо для измерения напряжений и интервалов времени, поскольку непосредственно оператору доступно считывание только расстояний (сантиметры, деления) по масштабной сетке на экране. В некоторых современных осциллографах измерение осуществляется автоматически при помощи цифрового устройства. Результат отображается на экране в цифровой форме.

Основные характеристики и виды электронных осциллографов

Электронные осциллографы характеризуются рядом технических и метрологических параметров. К наиболее важным относятся сле­дующие:

  • калиброванные значения коэффициента отклонения;

  • полоса пропускания, т.е. диапазон частот, в пределах которого коэффициент усиления канала Y уменьшается на 3 дБ по отношению к некоторой опорной частоте;

  • диапазон изменения длительности развертки;

  • входное сопротивление и входная емкость канала Y;

  • точностные параметры, характеризующие погрешности измерения напряжения и интервалов времени.

При выборе осциллографа следует исходить из характера измеряе­мого сигнала (гармонический или импульсный) и его вероятных пара­метров (ширина спектра, граничные частоты, частота следования, скваж­ность, амплитуда напряжения и т.д.).

Осциллографы подразделяются на универсальные, скоростные, стробоскопические, запоминающие, специальные. Наиболее употребитель­ными являются универсальные осциллографы (в ГОСТ обозначение С1). Они позволяют проводить исследования электрических сигналов в ши­роком диапазоне частот, амплитуд и длительностей сигналов. Поло­са пропускания достигает 200—350 МГц, диапазон амплитуд от единиц милливольт до сотен волы. Возможно измерение длительностей им­пульсов от нескольких наносекунд до секунд.

Скоростные осциллографы (обозначение С7) служат для исследова­ния гармонических и импульсных сигналов (включая однократные импульсы) с характерными временами, составляющими доли и единицы наносекунд в реальном масштабе времени. Быстродействие достигается благодаря использованию ЭЛТ с бегущей волной. Полоса пропускания скоростных осциллографов достигает 5 ГГц.

Стробоскопические осциллографы (обозначение С7) используют стробоскопическое преобразование масштаба времени. Их полоса про­пускания достигает 10 ГГц. При помощи осциллографов этого вида можно исследовать повторяющиеся сигналы с амплитудой несколько милливольт и длительностью несколько пикосекунд.

Запоминающие осциллографы (обозначение С8) применяются для исследования медленных процессов и однократных импульсов. За­поминание осуществляется при помощи специальных ЭЛТ. Длитель­ность измеряемых интервалов времени достигает десятков секунд. Время сохранения - от нескольких часов до нескольких суток.

Специальные осциллографы (С9) в основном предназначены для исследования телевизионных и радиолокационных сигналов.

Для одновременного исследования нескольких сигналов используют многолучевые осциллографы. Обычно они имеют два канала вертикаль­ного отклонения, однако выпускаются также осциллографы с большим числом каналов (до пяти).

В последнее время все большее распространение получают электрон­ные осциллографы с цифровой обработкой сигнала. В таких приборах аналоговый блок, представляющий собой обычный (аналоговый) осциллограф, дополнен блоком дискретизации аналогового сигнала и цифровым блоком, В состав последнего входят микропроцессор, кото­рый управляет процессами преобразования сигналов и процедурой изме­рения, а также клавиатура, позволяющая вводить необходимые програм­мы. Введение цифровой обработки значительно расширило возможно­сти осциллографа. Появилась возможность автоматизации управления его работой, увеличения производительности. Измеряемая информа­ция может быть подвергнута необходимой обработке, упорядочению и запоминанию. Параметры сигнала в цифровой форме отображаются на экране ЭЛТ. Массивы информации могут быть представлены на эк­ране в виде гистограмм, графиков, таблиц и т.д. По желанию оператора можно изменить масштаб, вычленить и растянуть какую-либо часть осциллограммы, наложить друг на друга или одновременно представить на экране несколько зависимостей. Автоматическая калибровка в ходе измерения, коррекция погрешностей, уменьшение влияния помех благодаря усреднению сигнала за большое число периодов приводит к существенному повышению точности измерений. Возможность вычис­ления и отображения на экране преобразования Фурье исследуемого сигнала, дифференцирования, интегрирования и других операций ка­чественно меняют характер получаемой информации.

Светолучевые осциллографы. Светолучевые осциллографы исполь­зуются для исследования электрических сигналов с верхней частотой, не превышающей 30 кГц. Достоинством этих приборов является про­стота устройства, возможность одновременной регистрации большого числа (обычно 12 или 24) процессов.

Светолучевой осциллограф состоит из магнитного блока с осциллографическими гальванометрами (ОГ), оптической системы, развертывающей системы, отметчика времени и блока питания.

Осциллографический гальванометр представляет собой укреплен­ную на растяжках подвижную рамку магнитоэлектрического измери­тельного механизма, заключенную в кожух из магнитного материала. На кожухе укреплены магнитно-мягкие полюсные наконечники. ОГ вставляются в специальные гнезда, являющиеся воздушными зазорами магнитопровода единого постоянного магнита. Таким образом, все рамки находятся в постоянном магнитном поле. При прохождении по рамке исследуемого тока происходит ее поворот, как и в обычном

магнитоэлектрическом механизме. Из-за того, что подвижная часть ОГ имеет малый момент инерции, угол ее отклонения в каждый момент времени пропорционален мгновенному значению тока. На подвижной части ОГ укреплено маленькое зеркальце для светового отсчета.

Схема общего устройства осциллографа приведена на рис. 2.49. Луч света от источника 1 проходит через узкую щель 2 и призму 3 и отра­жается от зеркальца 4. Затем он попадает на призму 5, где разделяется на две части. Часть луча проходит поверх призмы 5 и концентрируется с помощью цилиндрической линзы 6 в точку на фотопленке 7. Вторая часть луча отклоняется призмой 5 и направляется на зеркальный мно­гогранный барабан 8, отражаясь от которого, падает на экран 9. Если пленка 7 и зеркальный барабан 8 находятся в покое, то при колебаниях зеркала от четырех ОГ световое пятно описывает на пленке в попереч­ном направлении и на экране прямую линию. Для наблюдения и фото­графирования исследуемого процесса во времени надо развернуть движе­ние луча по оси времени, Для этого пленку протягивают, а зеркальный барабан приводят во вращение. Если скорость вращения барабана тако­ва, что луч перемещается по одной грани в течение времени, равного целому числу периодов исследуемого тока, то кривая на экране непо­движна. Лентопротяжный механизм и барабан приводятся двигателем.

Следует отметить, что устройства для визуального наблюдения отсутствуют во многих современных светолучевых осциллографах, которые осуществляют только функцию регистрации на фотоносителе.

Для задания масштаба времени используют специальные отметчики, с помощью которых на носитель наносятся метки, разделенные извест­ными временными интервалами. Отметчики времени обычно строятся на основе электромеханических устройств. Функцию отметчика может выполнять также специально выделенный для этой цели ОГ, на вход которого подаются импульсы с известным периодом, регистрируемые одновременно с исследуемым сигналом.

Область применения светолучевых осциллографов ограничивается инерционностью подвижной части. Без существенных искажений этим прибором можно регистрировать синусоидальные токи и напряжения с частотами не свыше 30 кГц. Светолучевые осциллографы применяются при исследовании электрических машин и аппаратов, в геологии при поисках ископаемых сейсмическими методами, для регистрации землетрясений и т.п.

ВОПРОСЫ к разделу 2.1

1. Какие измерительные механизмы используются для создания вольтметров? А амперметров?

2. Какие измерительные механизмы используются в цепях постоянного тока, а какие – в цепях переменного тока? Каков их принцип действия?

3. Чем различаются схемы электромеханических амперметров и вольтметров?

4. Как устроены приборы выпрямительной и термоэлектрических систем? Каковы области их применения?

5. В чем преимущества аналоговых электронных вольтметров по сравнению с электромеханическими?

6. Как устроены аналоговые электронные вольтметры? Области их применения?

7. Какие методические погрешности могут возникать при работе с аналоговыми электронными вольтметрами?

8. Каков принцип действия компенсатора постоянного напряжения? За счет чего они обеспечивают высокую точность измерений?

9. Что такое мультиметр? Какие электрические величины измеряются мультиметрами?

10. В чем преимущества цифровых вольтметров перед аналоговыми?

11. Как устроена электронно-лучевая трубка осциллографа?

12. Какие элементы электронно-лучевой трубки составляют электронную пушку?

13. Как устроены электронно-лучевые осциллографы?

14. Как устроен светолучевой осциллограф?