Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Otvety_GEK_gidrografia_1.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
3.02 Mб
Скачать
  1. Главные радиусы кривизны земного эллипсоида

Через произвольную точку на поверхности земного эллипсоида можно провести бесчисленное множество вертикальных плоскостей, которые образуют с поверхностью эллипсоида нормальные сечения. Два из них: меридианное и перпендикулярное ему сечение первого вертикала — носят название главных нормальных сечений.

Кривизна поверхности земного эллипсоида в разных ее точках различна. Более того, в одной и той же точке все нормальные сечения имеют разную кривизну. Радиусы кривизны главных нормальных сечений в данной точке являются экстремальными, т. е. наибольшими и наименьшими среди всех остальных радиусов кривизны нормальных сечений. Величины радиусов кривизны меридиана М и первого вертикала N в данной широте φ определяются по формулам:

M = a(1-e²) / (1 - e²*sin² φ)3/2;

N = a / (1 - e²*sin² φ)½

где а — большая полуось эллипсоида, равная радиусу экватора.

Радиус кривизны r произвольной параллели эллипсоида связан с радиусом кривизны сечения первого вертикала соотношением

r = N cos φ

Величины радиусов кривизны главных сечений эллипсоида М и N характеризуют его форму вблизи данной точки. Для произвольной точки поверхности эллипсоида отношение радиусов

M / N = 1 - e² / 1 - e²*sin² φ

показывает, что в общем случае M < N.

На экваторе (φ = 0) M = а(1 — e²), N = a и M/N< 1,т. е. N>M и разность их на экваторе достигает максимума(N— M)max = 42,5 км.

На полюсах (φ = 90°) N/M = 1, т. е. M = N.

Таким образом, на полюсах нормальные сечения становятся равными между собой, так как все они являются меридианными сечениями. Небольшую часть поверхности эллипсоида можно принять за часть поверхности шара. .Радиус такого шара принимается равным среднему геометрическому из радиусов кривизны главных сечений в средней точке рассматриваемого участка поверхности R = √ MN = a √ (1 - e²) / 1 - e² * sin² φ

  1. Технические характеристики судовой рлс. Использование рлс в навигационных целях. Определение места. Оценка точности.

Судовые радиолокационные станции (РЛС) позволяют измерять направления и расстояния до окружающих объектов в условиях плохой видимости. Благодаря этим свойствам РЛС широко используется для определения места судна, обеспечения плавания в узкости и расхождения с другими судами.

В навигационных РЛС используются радиоволны сантиметрового диапазона, которые распространяются и отражаются по законам, близ» ким к законам оптики.

В отличие от световых волн они больше подвержены рефракции и дифракции. Благодаря этим особенностям радиоволн дальность радиолокационного горизонта при стандартном состоянии атмосферы примерно на 15 % больше дальности видимого горизонта и рассчитывается по формуле (1)

где Dp — дальность радиолокационного горизонта, мили; h — высота антенны РЛС над уровнем моря, м.

Максимальная дальность радиолокационного обнаружения объектов определяется по формуле (2) где Н — высота объекта, м.

Объект будет обнаружен лишь в том случае, если на вход приемника РЛС поступит отраженный сигнал, превышающий по мощности порог его чувствительности.

Количество энергии, которое в состоянии отразить в направлении антенны объект, зависит от его размера, формы, электрических свойств и характера поверхности. По этим причинам часть объектов, находящихся в пределах радиолокационной дальности, рассчитанной по формуле (2), не будет обнаружена на экране радиолокатора.

Особенности распространения и отражения радиоволн, ограниченность разрешающей способности РЛС, воспроизведение окружающей обстановки на плоскости с незначительной градацией по яркости эхо-сигналов, приводят к тому, что изображение на экране имеет существенные различия и с картой, и с местностью.

Необходимый опыт использования РЛС приобретается систематическим изучением побережья в радиолокационном отношении. С этой целью в условиях хорошей видимости сопоставляют изображение на экране РЛС с картой и местностью. Детали рельефа берега, дающие четкие эхо-сигналы, выделяют на карте цветными карандашами или специальной штриховкой. Часто прибегают к фотографированию экрана РЛС или зарисовкам изображения с него, фиксируя место судна на карте.

Практика использования радиолокационных станций в судовождении позволяет привести ряд общих рекомендаций по чтению изображения на экране.

Берег. При подходе к побережью с моря на экране радиолокатора появляются сначала отдельные отметки эхо-сигналов от деталей рельефа, распознать которые на карте бывает очень трудно. По мере сокращения расстояния количество отметок растет и, наконец, образуется слитная протяженная отметка, чередующаяся с затененными участками. В этих условиях холмистый рельеф образует изображение в виде световых пятен и затененных участков.

Обрывистые берега дают изображение в виде четкой слитной отметки, ближайшая кромка которой довольно точно копирует соответствующий участок карты.

Если берег полого опускается к воде, то береговая черта плохо различается на экране или же вообще не обнаруживается.

Низкие песчаные берега, песчаные пляжи и острова обнаруживаются на малых расстояниях и дают изображения своих кромок в виде тонких прерывистых линий или в виде бесформенных отметок от неровностей рельефа.

Искусственные сооружения. Береговые сооружения, как правило, обладают хорошими отражающими способностями и поэтому первыми обнаруживаются при подходе к берегу. Четкие ровные кромки эхо-сигналов на малых расстояниях позволяют распознавать на экране отдельные детали сооружений. Хорошо распознаются кварталы строений, мосты, пирсы, причальные стенки, волноломы, башенные краны, металлические фермы и нефтебаки. Искусственные каналы и устья рек обнаруживаются лишь в том случае, если угловая ширина входа превышает разрешающую способность РЛС по углу.

Небольшие объекты. Форма эхо-сигналов от объектов малой протяженности зависит только от характеристик самой РЛС. Объясняется это тем, что размеры небольших объектов в масштабе изображения оказываются меньше, чем площадь минимального разрешения. Такие небольшие объекты принято называть точечными. К ним относятся мелкие плавучие средства, буи, бакены, навигационные знаки, подобные им сооружения или естественные объекты.

При нахождении точечного объекта на малом удалении от судна эхо-сигнал будет иметь радиально вытянутую форму. Это является следствием превышения линейных размеров разрешающей способности по дистанции (РСД) над линейными размерами разрешающей способности по углу (РСУ).

При получении эхо-сигнала от точечного объекта на периферии экрана РЛС он растягивается по дуге, так как в этом случае соотношение линейных размеров РСД и РСУ обратное.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]