
- •Курс, пеленг, курсовой угол. Перевод и исправление румбов.
- •Спасательные шлюпки и плоты. Действия при оставлении судна и способы выживания.
- •Эхолоты, устанавливаемые на судах и их принцип действия.
- •Морские единицы длины и скорости. Лаги, определение поправки и коэффициента лага.
- •Решение прямой и обратной геодезической задачи на плоскости.
- •Авторулевые «атр» и «аист».
- •Подбор звезд для определения места. Нанесение на звездный глобус положения планет и Луны.
- •Привязка и координирование береговых средств навигационного обеспечения
- •Гирокомпасы типа «Курс» и «Вега»
- •Изображение рельефа дна на мнк
- •Влияние внешних факторов на управляемость и маневренность судна.
- •Магнитный компас «кмо-т». Уничтожение девиации способом Эри. Составление таблиц остаточной девиации и корректировка в рейсе.
- •Понятие референц-эллипсоида. Особенности Меркаторской проекции, применяемой при создании мнк, Географические координаты и их разности.
- •Зональная система прямоугольных координат Гаусса-Крюгера
- •Лаги гидродинамические, индукционные, гидроакустические, доплеровские и корреляционные.
- •Дальность видимого горизонта, дальность видимости огней и предметов.
- •Основные линии и плоскости референц-эллипсоида.
- •Кодекс оспс.
- •Метод определения высот береговых знаков
- •Тормозной путь. Влияние водоизмещения, осадки, дифферента, скорости и запаса воды под килем. Эффект проседания.
- •Судовые радиопеленгаторы. Радиопеленгование. Определение места. Оценка точности.
- •Содержание информации о маневренных характеристиках судна согласно требованиям имо. Лоцманская карточка.
- •Системы координат, используемые при выполнении промерных работ
- •Определение места судна по двум и трем пеленгам. Оценка точности.
- •Уклонение отвесных линий
- •Электронные карты (enc) и информационные картографические системы ecdis. Требования имо. Особенности навигационного оборудования судов, управляемых с мостика одним человеком.
- •Счисление пути с учетом дрейфа и течения. Оценка точности.
- •Главные радиусы кривизны земного эллипсоида
- •Технические характеристики судовой рлс. Использование рлс в навигационных целях. Определение места. Оценка точности.
- •Расчет плавания по ортодромии. Приближенные способы расчета.
- •Вычисление длины дуги меридиана и параллели
- •Средства автоматизированной прокладки (сарп). Требования имо.
- •Аналитическое счисление и его автоматизация.
- •Общие положения при решении прямой и обратной геодезической задачи на поаерхности эллипсоида.
- •Радиолокационные маяки-ответчики типа «ракон». Радиолокационные буи-ответчики сарт.
- •Несение ходовой навигационной вахты.
- •Руководство имо для торговых судов по поиску и спасению (iaмsar).
- •Снс gps «Navstar» и «Глонасс».
- •Несение вахты в порту и на якорной стоянке. (пднв-95, с поправками).
- •Взаимные нормальные сечения. Уравнение геодезической линии
- •Первичные действия после посадки на мель.
- •Система «Коспас-Сарсат». Аварийные буи «эпирб». Аварийные радиостанции.
- •Определение места по Солнцу. Оценка точности.
- •Действия по оказанию помощи терпящему бедствие судну и спасение людей после его гибели.
- •Обратная угловая засечка. Решение задачи Ганзена
- •Определение места по звездам и планетам. Оценка точности.
- •Обратная угловая засечка. Решение задачи Потенота
- •Определение координат промерного судна с берега прямой засечкой с берега.
- •Исходные данные: xa, ya, αAc, xb, yb, αBd
- •Измеряемые элементы: β 1 , β2
- •Неизвестные элементы: X , y
- •Определение поправки компаса.
- •Тропические циклоны и расхождение с ними.
- •Составление грузового плана
- •Выверка секстана
- •1. Проверка параллельности оптической оси зрительной трубы плоскости азимутального лимба
- •2. Проверка перпендикулярности большого зеркала плоскости азимутального лимба
- •3. Проверка перпендикулярности малого зеркала плоскости азимутального лимба
- •Поперечная равноугольная циллиндрическая проекция Гаусса
- •Международные документы по безопасной перевозке грузов
- •Судовой Хронометр. Измерение времени на судне. Гринвичское, международное, стандартное корректируемое, поясное, местное и судовое время.
- •Сигналы судовых тревог. Обязанности членов экипажа по тревогам. Аварийные партии, состав и снабжение. Тренировки членов аварийных партий и групп.
- •Контроль технического состояния судна. Классификационные общества технического надзора
- •Поправки, вводимые в измеренные глубины при выполнении промера мотодом эхолотирования
- •2. Определение поправок эхолота тарированием
- •3. Определение поправок эхолота суммированием частных поправок
- •Якорное устройство
- •Перевозка опасных грузов. Кодекс по перевозке опасных грузов (imdg-Code)
- •Определение подробности промера по геоморфологическому признаку
- •Грузовое устройство. Люковые закрытия. Оценка прочности. Правила технической эксплуатации.
- •Перевозка сыпучих грузов
- •Организация вахтенной службы при плавании в особых обстоятельствах
- •Особенности перевозки грузов на танкерах
- •Пособие «Океанские пути мира». Рекомендованные пути. Системы разделения движения. Принципы выбора пути перехода.
- •Обследование банок и мелководья
- •72. Международня конвенция о грузовой марке 1966г. Виды судовых грузовых марок. Запас плавучести
- •Международная Конвенция о грузовой марке 1966г.Виды грузовых марок.Запас плавучести.
- •Ковенция солас-74
- •Текущий контроль остойчивости судна. Удифферентовка и устранение крена с использованием суд. Документации и приборов
- •Предвычисление высоты уровней приливов и приливных течений по таблицам и картам
- •Международная конвенция по подготовке,дипломированию моряков и несению вахты(пднв 78/95)
- •Контроль общей и местной прочности с использованием судовой документации и приборов.
- •Правила округления глубин для нанесения на промерный планшет
- •Международная конвенция по защите морской среды от загрязнения (марпол73/78) и недопущения разлива нефтепродуктов (ойлпол)
- •Основные течения в Мировом океане.
- •Основные характеристики барических образований: циклонов, антициклонов, фронтов
- •Основыне судовые документы и документация судового мостика
- •Обеспечение непотопляемости аварийного судна.Операивная информация о непотопляемости
- •Система ограждения навигационных опасностей мамс
- •Определение среднего многолетнего уровня поста. Нуль уровенного поста. Нуль глубин.
- •Международный кодекс по управлению безопасностью судов и защите среды (мкуб).
- •Участки земной поверхности, которые можно заменить плоскостью без введения поправки за искажение
- •89. Информация капитану об остойчивости и прочности судна,ее использование при составлении грузового плана судна.
- •90. Кодекс Торгового Мореплавания Украины
Понятие референц-эллипсоида. Особенности Меркаторской проекции, применяемой при создании мнк, Географические координаты и их разности.
Плотность масс Земли в её толще распределена чрезвычайно неравномерно, поэтому уровенная поверхность образует сложное в математическом отношении трёхмерное тело. Эта фигура, образованная уровенной повехностью, имеющая неправильную геометрическую форму, и называется геоидом, что в переводе с греческого означает «землеподобный».
Для решения задач морской навигации используют аппроксимацию (приближение) геоида телом неправильной математической формы. Это тело – эллипсоид вращения, полученный в результате вращения эллипса вокруг малой оси. Другими словами, геоид заменяют его моделью. Сочетание геоида, а также эллипсоида по экватору и мередиану 80Е…100W.
Используют следующие способы апроксимации:
объём эллипсоида предполагается равным объёму геоида;
большая полуось элипсоида а совпадает с плоскостью экватора геоида;
малая полуось b направлена по оси вращения Земли;
сумма квадратов уклонений поверхности эллипсоида от поверхности геоида выбирается минимальной;
Для геодезических и картографических расчётов в определённых районах Земли необходимо иметь земной эллипсоид, поверхность которого максимально совпадает с поверхностью этого района. Очевидно, что такой эллипсоид должен иметь вполне определённые ориентацию и размеры. Это референц-эллипсоид. В конкретном государстве к нему и относят измерения на земной поверхности.
В России в качестве референц-эллипсоида принят референц-эллипсоид Ф. Н. Красовского. Этот референц-эллипсоид вычислен группой учёных под руководством профессора Ф. Н. Красовского. Модель имеет следующие параметры:
большая полуось a = 6378245 м;
малая полуось b = 6356863 м;
полярное сжатие a –b) / a = 1/298.3;
эксцентриситет e = (a2-b2) / a = 0.0818
Отклонения данного эллипсоида от геоида на территории нашей страны не превышает 150 м.
В навигационных задачах, не требующих высокой точности, Землю принимают за шар, объём которого равен объёму земного эллипсоида, исходя за соотношение:
4/3R3 = 4/3R2b.
Для референц-эллипсоида Красовсокого радиус модели Земли как шара равен:
R = 6371110 м.
В качестве модели геоида для спутниковых навигационных систем до недавнего времени, например, использовали эллипсоид WGS-72, в настоящее время используется более точная модель WGS-84 (World Geodetic System – 1984).
Меркаторская проекция относится к классу цилиндрических нормальных равноугольных проекций, в которых параллели нормальной сетки есть параллельные прямые, а расстояние между меридианами пропорциональны соответствующим разностям долгот.
Основные этапы проектирования карты:
1-й этап: Осуществление геодезических измерений на поверхности Земли и их координатная привязка к конкретному референц-эллипсоиду.
2-й этап: Уменьшение размеров референц-эллипсоида до определённого масштаба с целью его дальнейшего развёртывания на плоскости, то есть создание условной эллипсоидальной модели Земли (глобуса) в масштабе, пригодном для изготовления карт. Это математическое преобразование эллипсоид – глобус сохраняет геометрическое подобие контуров изображений. Масштаб преобразования называется главным масштабом o будущей карты.
3-й этап:
Выбор картографической проекции для
развёртывания условного глобуса на
плоскость и проектирование (преобразование
глобус – карта). Из теории искажений
известно, что при проектировании
эллипсоида на плоскость масштаб o
остаётся постоянным лишь на определённом
множестве точек карты. В общем случае
при удалении от этого множества масштаб
изменяется и становится частным масштабом
другого множества точек. Величина
называется увеличением масштаба.
Отношение частного
масштаба к главному называется в
картографии модулем
параллели:
Меркаторской милей называется длина изображения одной минуты дуги меридиана ф в проекции меркатора, выраженная в линейных единицах в масштабе карты:
Линейный морской масштаб lф показывает, сколько морских миль содержится в одном сантиметре карты и представляет величину, обратную меркаторской миле:
ГЕОГРАФИЧЕСКИЕ КООРДИНАТЫ. Положение различных объектов на поверхности Земли может быть определено с помощью географических координат. Для отсчета координат на земной шар условно нанесена система точек и кругов (рис. 2). Введем ряд определений. Воображаемая прямая, вокруг которой происходит суточное вращение Земли, называется земной осью. Точки пересечения ее с поверхностью Земли называются географическими или истинными полюсами: северным Pn и южным Ps. При сечении шара плоскостью получается круг, а на поверхности шара образуется окружность. Если секущая плоскость проходит через центр шара, то круг имеет наибольшие размеры и называется большим. Круги, образующиеся от сечения шара плоскостями, не проходящими через его центр, называются малыми. Окружность большого круга QQ/, плоскость которого перпендикулярна земной оси, называется экватором. Он делит земной шар на северное и южное полушария. Окружности малых кругов, плоскости которых параллельны плоскости экватора, называются параллелями (рр/). Окружности больших кругов, плоскости которых проходят через ось Земли, называются географическими или истинными меридианами. Половину окружности меридиана PnMPs, заключенную между полюсами и проходящую через данную точку М, называют меридианом места. Меридиан PnGPs, проходящий через астрономическую обсерваторию в Гринвиче (Англия), носит название гринвичского (начального) меридиана. Гринвичский меридиан вместе с противоположным ему меридианом РnG/Ps делит земной шар на восточное и западное полушария.
В систему
географических координат входят две
сферические координаты: широта и долгота.
Географической
широтой
какой-либо точки называется угол при
центре Земли, составленный отвесной
линией (земным радиусом), проведенной
через данную точку, и плоскостью экватора
(угол MOL, см. рис. 2). Широта измеряется
дугой меридиана от экватора до параллели
данной точки. Она отсчитывается к северу
или югу от экватора от 0 до 90°. Если точка
находится в северном полушарии, ее
широте приписывается наименование N
(северная), если в южном - S (южная). Широту
обозначают греческой буквой "
"
(фи)
Географической
долготой
какой-либо точки называется двугранный
угол между плоскостью гринвичского
меридиана и плоскостью меридиана данной
точки (угол GOL, см. рис. 2). Долгота измеряется
меньшей из дуг экватора между гринвичским
меридианом и меридианом точки и
отсчитывается от гринвичского меридиана
к востоку или западу от 0 до 180°. Если
точка находится в восточном полушарии,
то долготе приписывают наименование Е
(восточная), если в западном - W (западная).
Долготу обозначают греческой буквой
"
"
(ламбда).
Разность широт и разность долгот. Географические координаты судна в результате сделанного перехода изменяются. Изменения широты и долготы судна называются разностями широт и долгот. Разность широт (РШ) двух точек на земной поверхности измеряется дугой меридиана, заключенной между параллелями этих точек. Наибольшее значение РШ может составить 180°, что соответствовало бы перемещению судна из одного полюса в другой. Если судно перемещалось по какой-либо одной параллели, то РШ равна 0°. Вычисленной РШ приписывается наименование к N или к S в зависимости от того, в каком направлении перемещалось судно. Разность долгот (РД) двух точек на земной поверхности измеряется меньшей из дуг экватора, заключенных между меридианами этих точек. Так как за разность долгот принимается всегда меньшая из дуг экватора, то ее значение не может превышать 180°. Если при сложении разноименных долгот получено значение, большее 180°, то за РД принимается дополнение до 360°. Такой случай может возникнуть при пересечении судном меридиана 180°. Вычисленному значению РД приписывается наименование к Е или W в зависимости от того, в каком направлении перемещалось судно. Если северной широте и восточной долготе условно приписать знак "плюс" (+), а южной широте знак "минус" (-), то значение РШ и РД можно вычислить по алгебраическим формулам:
РШ = 2 - 1 ; РД = 2 - 1 (Здесь 2 и 2 - координаты конечной, а 1 и 1 - начальной точек плавания).
Знак результата, полученного при вычислении по формулам, покажет наименования РШ и РД. Если при вычислении РД берется дополнение до 360°, то наименование РД меняется. Чтобы не ошибиться в значении и наименовании вычисляемых РШ и РД, следует хорошо представлять взаимное расположение меридианов и параллелей на земном шаре (см. рис. 3, а и б). На практике бывает нужно найти координаты точки, в которую пришло судно, если заданы координаты пункта отхода, а также РШ и РД, характеризующие положение точки прихода. Вычисления можно произвести по алгебраическим формулам:
2 = 1 + РШ ; 2 = 1 + РД (Здесь 2 и 2 - координаты конечной, а 1 и 1 - начальной точек плавания).