
9. Матрицаны сатылы түрге келтіріп,рангісін тап
0 5 -10
3 1 7
2 3 10
-1 -4 5
0 2 -4
1-ші мен 2-ші жолдар орнынын ауыстырамыз,
3 1 7
0 5 -10
2 3 10
-1 -4 5
0 2 -4
1-ші жолды 3-ке бөлеміз,
1 1/3 7/3
0 5 -10
2 3 10
-1 -4 5
0 2 -4
Содан кейин, 1-ші жолды 2-ге көбейтеміз,
2 2/3 14/3
0 5 -10
2 3 10
-1 -4 5
0 2 -4
Вычли 1-ую строку из 3-ей строки и восстановили ее
1 1/3 7/3
0 5 -10
0 7/3 16/3
-1 -4 5
0 2 -4
1-ші жолды -1-ге көбейтеміз,
-1 -1/3 -7/3
0 5 -10
0 7/3 16/3
-1 -4 5
0 2 -4
Вычли 1-ую строку из 4-ой строки и восстановили ее
1 1/3 7/3
0 5 -10
0 7/3 16/3
0 -11/3 22/3
0 2 -4
Восстановили 1-ую строку до первоначального вида
3 1 7
0 5 -10
0 7/3 16/3
0 -11/3 22/3
0 2 -4
2-ші жолды 5-ке бөлеміз,
3 1 7
0 1 -2
0 7/3 16/3
0 -11/3 22/3
0 2 -4
2-ші жолды 7/3-ке көбейтеміз,
3 1 7
0 7/3 -14/3
0 7/3 16/3
0 -11/3 22/3
0 2 -4
Вычли 2-ую строку из 3-ей строки и восстановили ее
3 1 7
0 1 -2
0 0 10
0 -11/3 22/3
0 2 -4
2-ші жолды -11/3-ке көбейтеміз,
3 1 7
0 -11/3 22/3
0 0 10
0 -11/3 22/3
0 2 -4
Вычли 2-ую строку из 4-ой строки и восстановили ее
3 1 7
0 1 -2
0 0 10
0 0 0
0 2 -4
2-ші жолды 2-ге көбейтеміз,
3 1 7
0 2 -4
0 0 10
0 0 0
0 2 -4
Вычли 2-ую строку из 5-ой строки и восстановили ее
3 1 7
0 1 -2
0 0 10
0 0 0
0 0 0
Восстановили 2-ую строку до первоначального вида
3 1 7
0 5 -10
0 0 10
0 0 0
0 0 0
Сонда, жауабы: ранг 3-ке тең
10. Крамер әдісімен теңдеулер жүйесін шеш
Алдымен Δ анықтауышын есептейміз. Оны тауып алған соң, Δ1,Δ2,Δ3 анықтауыштарын есептейміз. Олар- сәйкес тік жолдарды бос мүшелермен алмастырғаннан пайда болған матрица анықтауыштары.
1 2 1 8 2 1 1 8 1 1 2 8
Δ = -2 3 -3=4 Δ1= -5 3 -3 =4 Δ2 =-2 -5 -3=8 Δ3= -2 3 -5 =12
3 -4 5 10 -4 5 3 10 5 3 -4 10
Жүйе шешімдері
x1 =Δ1/Δ=1 x2 =Δ2/Δ=2 x3 =Δ3/Δ=3
11. Кері матрица әдісімен теңдеулер жүйесін шеш:
3х1+ 2х2+ х3= 5
Х1+ х2- х3= 0
4х1 -х2+ 5х3= 3
Негізгі матрица түрінде жазамыз,
3 2 1
1 1 -1
4 -1 5
Анықтауышын табамыз,
3*1*5+2*(-1)*4+1*(-1)*1-4-10+3=-5
Яғни, аныөтауыш 0-ге тең емес,ол жүйе матрицасы ерекше емес деген сөз.Осы матрицаның кері матрицасын табамыз,
-4/11 1 3/11
9/11 -1 -4/11
5/11 -1 -1/11
Енді Х=А-1В теңдікті қолданып белгісіздерді табамыз
Х1
Х= х2= А-1В=-1/5* -4/11 1 3/11 5 -1
Х3 9/11 -1 -4/11* 0= 3
5/11 -1 -1/1 3 2
Жауабы: x1 = -1
x2 = 3
x3 = 2