
- •Лекция 17.
- •Этапы переваривания углеводов в организме. Всасывание и распределение углеводов.
- •Биосинтез гликогена в печени и мышцах.
- •Распад гликогена в организме. Этапы переваривания углеводов в организме. Всасывание и распределение углеводов
- •Биосинтез гликогена в печени и мышцах
- •Стадии синтеза гликогена.
- •Условия синтеза гликогена:
- •Распад гликогена в организме
- •Стадии гликогенолиза.
- •Условия распада гликогена:
- •Лекция 18.
- •Промежуточный обмен глюкозы в организме. Аэробный и анаэробный гликолиз в организме.
- •Глюконеогенез. Роль печени в углеводном обмене.
- •Цепь реакций гликолиза можно расчленить на два звена.
- •Реакции гликолиза.
- •Выход атф при аэробном распаде глюкозы.
- •Глюконеогенез. Роль печени в углеводном обмене
- •Образование фосфоенолпирувата из пирувата (обход пируваткиназной реакции).
- •Гидролиз фруктозо-1,6-дифосфата (обход фосфофруктокиназной реакции).
- •Регуляция обмена углеводов (глюконеогенеза).
- •Пентозофосфатный путь обмена углеводов.
Выход атф при аэробном распаде глюкозы.
Образование АТФ при гликолизе может идти 2 путями:
Субстратным фосфорилированием, когда для синтеза АТФ из АДФ и Н3РО4 используется энергия макроэргической связи субстрата.
Окислительным фосфорилированием за счет энергии переноса электронов и протонов по ЦПЭ (комплексы тканевого дыхания).
В аэробных условиях «экономятся» 2 молекулы НАДН → дыхательная цепь и образуют 3 · 2 = 6 молекул АТФ. (Дыхательная цепь, окисляющая НАДН имеет 3 пункта фосфорилирования – это I, III, IV. Комплексы дыхательной цепи на одну молекулу О2 – 3 молекулы Н3РО4. (Р/О = 3) – коэффициент фосфорилирования.) Учитывая 2 молекулы АТФ, синтезированные в реакциях фосфорилирования до стадии образования пирувата, на первом этапе получаем 2АТФ + 6АТФ = 8АТФ.
Если в дыхательной цепи окисляются ФАД-зависимые субстраты, то пунктов сопряжения остается 2: III и IV комплексы (Р/О = 2) на одну молекулу О2 – 2 молекулы Н3РО4.
Таким образом на третьем этапе за счет водороддонорной и собственно энергетической функции цикла Кребса получаем 24 АТФ.
В сумме на всех трех этапах аэробного окисления 1 моля глюкозы получаем 38 молей АТФ.
Полная энергия распада глюкозы составляет 2880 кДж/моль. Свободная энергия гидролиза высокоэнергетической связи АТФ равна 50 кДж/моль. Для синтеза АТФ при окислении глюкозы используется 38 · 50 = 1900 кДж, что составляет 65% от всей энергии распада глюкозы. Это максимально возможная эффективность использования энергии глюкозы.
Значение анаэробного гликолиза.
Анаэробный гликолиз, несмотря на небольшой энергетический эффект, является основным источником энергии для скелетных мышц в начальном периоде интенсивной работы, т.е. в условиях, когда снабжение кислородом ограничено.
Кроме того, зрелые эритроциты извлекают энергию за счет анаэробного окисления глюкозы, потому что не имеют митохондрий.
Глюконеогенез. Роль печени в углеводном обмене
Глюконеогенез – это синтез глюкозы из веществ неуглеводной природы.
Главные субстраты глюконеогенеза:
Пируват
Лактат – продукт анаэробного гликолиза в эритроцитах и работающих мышцах, используется в глюконеогенезе постоянно.
Глицерин – высвобождается при гидролизе жиров или при физической нагрузке.
Аминокислоты – образуются при распаде мышечных белков и включаются в глюконеогенез при длительном голодании или продолжительной мышечной работе.
Субстраты цикла Кребса
Жирные кислоты служить источником глюкозы не могут.
Схема включения субстратов в глюконеогенез.
Глюконеогенез обеспечивает потребность организма в глюкозе в тех случаях, когда понижение уровня глюкозы не компенсируется гликогеном печени. Например: при относительно длительном голодании или резком ограничении углеводов в питании.
Функции глюконеогенеза.
Поддержание уровня глюкозы в крови в период длительного голодания и интенсивных физических нагрузок. В анаэробных условиях мышцы для энергетических нужд используют только глюкозу;
Постоянное поступление глюкозы в качестве источника энергии абсолютно необходимо нервной ткани (мозгу) и эритроцитам.
Глюкоза необходима и жировой ткани для синтеза глицерина – составной части липидов.
Процесс глюконеогенеза в основном протекает в печени и менее интенсивно в корковом веществе почек, а также слизистой оболочке кишечника.
Реакции гликолиза протекают в цитозоле, а часть реакций глюконеогенеза протекает в митохондриях.
Включение различных субстратов в гликонеогенез зависит от физиологического состояния организма.
Суммарное уравнение глюконеогенеза:
Наиболее значимо образование глюкозы, в первую очередь из пирувата, так как в него легко превращается основная гликогенная аминокислота – аланин, а так же молочная кислота, которая, поступая в значительных количествах в кровь из мышц после физической нагрузки, в печени под действием ЛДГ окисляется в пируват. В процессе катаболизма субстратов цикла Кребса образуется оксалоацетат, который также включается в реакции глюконеогенеза.
Основные стадии глюконеогенеза совпадают с реакциями гликолиза и катализируются теми же ферментами , только протекают они в обратном направлении.
Однако имеется очень важная особенность, обусловленная тем, что 3 реакции в гликолизе, катализируемые киназами: гексокиназой, фосфофруктокиназой и пируваткиназой, необратимы. Эти барьеры обходятся в глюконеогенезе с помощью специальных реакций.
Рассмотрим реакции глюконеогенеза, которые отличаются от реакций гликолиза и происходят в глюконеогенезе с использованием других ферментов.