Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
вопросы1.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
1.07 Mб
Скачать

7. Силы и температура при резании металлов.

Силы резания при механической обработке

При внедрении в материал режущего инструмента на его переднюю и заднюю поверхности действуют нормальные силы N1, N2 и силы трения F1, F2 (рис.2.). Считая клин абсолютно жестким телом, можно после сложения всех сил получить общую равнодействующую силу R, являющуюся силой сопротивления резанию. Учитывая сложностиопределения нормальных сил и сил трения, для удобства расчета технологических параметров процесса резания силу R раскладывают в трехосной системе координат X-Y-Z на составляющие, которые измеряют динамометром или рассчитывают по эмпирическимформулам. При свободном ортогональном резании таких составляющих две: в направлении вектора скорости резания - Pz и перпендикулярно поверхности резания - Py.

Рис.2. Схема сил, действующих на режущий клин.

Для практических целей обычно используется не сама равнодействующая сила R, а ее составляющие Рz, Рy, Рx (рис.3). При этом: величина силы Рz определяет крутящий момент резания, по которому определяются: мощность станка, параметры зубчатых колес и валов механизма скоростей станка, параметры зуба и корпуса режущего инструмента; от величины силы Рy зависят: прогиб обрабатываемой детали и ее точность, параметры деталей механизма поперечной подачи; величина силы Рx является исходной для расчета параметров деталей механизма продольной подачи станка. Кроме этого, составляющие силы резания используются при расчетах параметров шпиндельного узла и жесткости станка.

Рис.3. Разложение силы резания R на три составляющие.

Три указанные составляющие силы резания взаимно перпендикулярны; поэтому величина и направление равнодействующей силы определяются как диагональ параллелепипеда

Соотношение величин составляющих сил Pz, Py, Px не остается постоянным и зависит от геометрических параметров рабочей части резца, элементов режима резания (v, t, s), износа резца, физико-механических свойств обрабатываемого материала и условий резания.

Отношения Py/Pz и Px/Pz возрастают с увеличением износа резца; увеличение подачи увеличивает отношение Px/Pz; уменьшение главного угла в плане увеличивает отношение Py/Pz. В некоторыхт случаях обработки одной из двух составляющих (Px или Py) может и не быть. Например, при разрезке прутка отрезным резцом отсутствует сила Px; при подрезке торца трубы резцом с φ=90º и λ=0º отсутствует составляющая Py. Сила Pz действует во всех случаях, и поэтому ее часто называют главной составляющей силы резания или просто силой резания.

Удельная сила резания и коэффициент резания. Для приближенного определения силы резания Pz может быть использовано уравнение

Pz = pf, Н

где f - площадь поперечного сечения среза в мм2; p - удельная сила резания (Н/мм2).

Удельная сила р численно равна силе резания, отнесенной к 1 мм2 сечения срезаемого слоя. Так как величина удельной силы зависит от элементов режима резания (v, t, s), геометрических параметров инструмента и условий обработки, значения р, полученные в различных условиях, не могут быть сопоставимы. Поэтому для расчета величин сил резания, как правило, используются различные варианты эмпирических зависимостей. Наиболее часто используется следующая типовая формула:

где i=x,y,z; Cpi, xpi, ypi, kpi - справочные коэффициенты, зависящие от свойств инструментального и обрабатываемого материалов, геометрии инструмента и т.д; t - глубина резания (мм); s - величина подачи (мм/об).

Аппаратура для измерения сил резания. Для экспериментального определения сил резания и изучения влияния на них различных факторов применяют специальные динамометры. Различают динамометры трехкомпонентные для измерения Pz, Py и Px; двухкомпонентные для измерения Pz и Py или Pz и Px и однокомпонентные для измерения какой-либо одной составляющей силы резания.

Динамометры в зависимости от принципа работы делятся на электрические, механические и гидравлические. Каждый динамометр включает в себя устройство для разложения равнодействующей силы резания на составляющие, датчики для преобразования измеряемой силы в удобно наблюдаемую величину и регистрирующее устройство. Наибольшее применение имеют электрические динамометры: пьезоэлектрические, емкостные, индукционные и динамометры с проволочными датчиками сопротивления.

Методы оценки состояния зоны резания

Для качественной и количественной оценки напряженно-деформированного состояния при резании существуют различные методы.

Метод определения коэффициента усадки стружки. Внешними наблюдениями за процессом стружкообразования установлено, что в большинстве случаев обработки резанием стружка укорачивается, утолщается и становится шире срезаемого слоя ("разбухает", "усаживается"). Усадка стружки является внешним проявлением процесса деформирования при наличии больших пластических деформаций. Рассматриваются следующие геометрические соотношения (рис.5): коэффициент укорочения kl=Lo/L , коэффициент уширения kb=b1/b, коэффициент утолщения ka=a1/a. Так как объем пластически деформированного материала не изменяется, то a·b·Lo=a1·b1·L и при b1=b получим, что Lo/L=a1/a , т.е. kl=ka .

При резании различных материалов и в разных условиях эти коэффициенты могут быть больше или меньше единицы. В случае равенства линейных размеров срезаемого слоя и стружки понятие "коэффициент усадки" теряет свой смысл, так как "усадки" не происходит, а энергия, затраченная на пластическое деформирование, достаточно велика.

Рис.5. Схема определения величины коэффициентов усадки стружки (коэффициентов укорочения и утолщения)

Метод координатных сеток. Этот метод позволяет качественно и количественно оценить напряженно-деформированное состояние в зоне резания при образовании сливных стружек и стружек скалывания. Сетки с различной формой ячеек наносятся на наблюдаемую поверхность детали. По характеру искажения формы ячеек сеток можно получить представления о размерах зоны деформированного материала, количественных характеристиках напряженно-деформированного состояния в очаге деформации и поверхностном слое детали, а также о контактных нагрузках и трении на поверхностях режущего клина.

Метод микротвердости. Метод определения напряженного состояния по изменению микротвердости Hu деформированного материала в сочетании с методом координатных сеток позволяет, зная величины интенсивностей деформаций еi, определить величины интенсивностей напряжений бi в различных точках зоны резания. Для этого необходимо построить графики механических испытаний, связывающие еi - бi - Hu.

Поляризационно-оптические методы. Эти методы позволяют экспериментально-расчетным путем определить контактные напряжения, а также распределение касательных и нормальных напряжений в режущем клине. Инструмент необходимо изготовлять из оптически-активного материала (эпоксидная смола, стекло) и резать высокопластичные материалы (свинец, алюминий). Обработка фотографий изоклин (линий равных нормальных напряжений) и изохром (линий равных касательных напряжений) достаточно сложна и трудоемка.

Кроме перечисленных выше, достаточно часто используются методы расчета напряженно-деформированного состояния материала в зоне резания, связанные с построением поля линий скольжения, применением теории подобия и электромоделирования.

При обтекании режущего клина часть деформированного материала перемещается по передней поверхности, превращаясь в стружку, а другая часть ниже линии среза - по задней поверхности и образует поверхностный слой детали.