
- •Общие методические указания
- •1. Основные понятия и законы химии
- •Задачи к главе 1
- •2. Состав и строение атома. Химическая связь.
- •2.1 Состав атома
- •2.2. Строение электронных оболочек
- •Пример 3. Какие значения квантовых чисел n, l, ml, ms имеют валентные электроны атома ? Напишите электронную формулу элемента.
- •2.3. Геометрические и энергетические характеристики атомов
- •2.4. Химическая связь.
- •Задачи к главе 2
- •3. Химическая термодинамика
- •3.1. Термохимия
- •3.2. Химическое сродство
- •Задачи к главе 3
- •4. Химическая кинетика и равновесие
- •4.1. Химическая кинетика
- •4.2. Химическое равновесие
- •Задачи к главе 4
- •5. Растворы. Способы выражения состава
- •Задачи к главе 5
- •6. Свойства растворов неэлектролитов
- •Задачи к главе 6
- •7. Свойства растворов электролитов
- •7.1. Электролитическая диссоциация
- •7.2. Произведение растворимости
- •Задачи к главе 7
- •8. Ионное произведение воды. Водородный показатель.
- •Задачи к главе 8
- •9. Ионообменные реакции. Гидролиз солей
- •Задачи к главе 9
- •10. Комплексные соединения
- •Задачи к главе 10
- •11. Окислительно-восстановительные реакции
- •Задачи к главе 11
- •12. Электрохимические явления
- •12.1. Гальванический элемент
- •12.2. Электролиз
- •Задачи к главе 12
- •2 Уровень
- •Приложения
- •Относительная электроотрицательность элементов
- •Термодинамические свойства простых веществ и соединений
- •Произведения растворимости труднорастворимых веществ
- •Термодинамические свойства ионов в водных растворах
- •Стандартные электродные потенциалы в водных растворах
- •Названия некоторых кислот и их кислотных остатков
Министерство образования и науки Российской федерации
Федеральное государственное бюджетное образовательное учреждение
высшего профессионального образования
Национальный исследовательский ядерный университет «МИФИ»
Волгодонский инженерно-технический институт-филиал НИЯУ МИФИ
Е.И.Шаврак, В.М. Сапельников
Учебно-методическое пособие
к выполнению индивидуальных заданий и
контрольных работ по общей химии
Волгодонск 2012
Введение
Химия – одна из фундаментальных наук естествознания, формирующих естественно-научное мировоззрение будущих специалистов. Наличие прочных химических знаний способствует воспитанию творческой личности, целостно воспринимающей мир, способной прогнозировать эффективность новых решений, организовывать их практическую реализацию, активно влиять на процессы, происходящие в социальной и профессиональной сферах.
Таким образом, курс «Общая химия» является базовым для последующего изучения общепрофессиональных и специальных дисциплин.
Целью настоящих методических указаний является оказание помощи студентам в изучении курса «Общая химия» и выполнении контрольной работы (для студентов-заочников) или индивидуального домашнего задания (для студентов дневной формы обучения). Контрольная работа состоит в решении задач по темам курса. Перед условиями задач каждой темы даны пояснения и приведены примеры решения. В конце указаний приведены справочные материалы, необходимые для решения задач.
Общие методические указания
Таблица вариантов заданий приведена в конце пособия (прил. 1). Вариант задания контрольной работы определяется в соответствии с двумя последними цифрами номера зачетной книжки.
В каждом варианте выделены три блока заданий, отличающихся степенью сложности. Задание из блока 1-го уровня оценивается в 1 балл, задание из блока 2-го уровня – в 1,5 балла, задание из блока 3-го уровня – в 2 балла. Контрольная работа считается зачтенной, если общее количество баллов, набранных за правильно решенные задания,- не менее 15 при условии, что охвачены все разделы, представленные в методическом указании. Количество баллов, набранных студентом за контрольную работу, учитывается при сдаче им экзамена по общей химии, в совокупности с баллами за выполнение лабораторного практикума.
При выполнении работы необходимо соблюдать следующие правила:
- оформление работы должно соответствовать Общим требованиям и правилам оформления текстовых документов в учебном процессе;
- контрольную работу следует выполнять аккуратно, оставляя поля для замечаний рецензента;
- условия задач своего варианта переписывать полностью;
- при решении для всех полученных числовых значений должна быть приведена их размерность;
- решение задачи, ответы на вопросы необходимо кратко обосновать, подробно изложить ход решения с математическими преобразованиями;
- используемые формулы должны сопровождаться пояснениями;
- в контрольной работе следует указывать учебники и учебные пособия, которые использовались при решении задач.
Контрольные работы или индивидуальные домашние задания, оформленные без соблюдения указанных правил, а также работы, выполненные не по своему варианту, не рецензируются и не зачитываются.
При выполнении контрольных работ и индивидуальных домашних заданий рекомендуется использовать следующие учебники и учебные пособия:
Коровин Н.В. Общая химия: Учеб. пособие. – М.: Высш. шк., 1998.-559с.
Хомченко И.Г. Общая химия. – М.: Высш. шк.,1999.
Глинка Н.Л. Общая химия.- М.:Химия,1986. - 718с.
Фролов В.В. Химия.- М.:Высш. шк., 1983. - 559с.
Стромберг А.Г., Семченко Д.П. Физическая химия. 4-е изд. – М.: Высш. шк., 2001.-527с.
Глинка Н.Л.. Задачи и упражнения по общей химии.- Л.,: Химия, 1986.-322с.
Пучкин П.А., Шалимов В.Н. Методические указания к решению задач в курсе общей химии/ Новочеркасский политехнический институт. -Новочеркасск: НПИ, 1986. - 16с.
1. Основные понятия и законы химии
Относительная атомная масса (Аr) химического элемента показывает, во сколько раз средняя масса атома естественного изотопного состава элемента больше 1/12 массы изотопа углерода-12 (12С):
Аr = mатома: (1/12 m (12С)).
Относительная молекулярная масса (Мr) простого или сложного вещества показывает, во сколько раз средняя масса молекулы естественного изотопного состава элемента больше 1/12 массы изотопа углерода-12 (12С):
Мr = mмолекулы: (1/12 m (12С)).
Атомная единица массы (а.е.м.) = 1,66·10-27кг; Аr и Мr – безразмерные величины.
Количество вещества ν – физическая величина, равная количеству молей структурных элементов, составляющих систему. Определяется ν отношением числа структурных единиц N, содержащихся в системе, к постоянной Авогадро NА:
ν = N : NА.
Моль – это количество вещества системы, содержащей столько же структурных единиц, сколько содержится атомов в углероде 12С, взятого массой 0,012 кг. Принято считать, что число структурных единиц в одном моле численно равно постоянной Авогадро NА = 6,02·1023 моль-1.
Молярная (мольная) масса М (Х) – масса единицы количества вещества Х, т.е. масса одного моля данного вещества (г/моль). Молярная масса М (Х) численно равна его относительной молекулярной массе (Мr).
Эквивалент – это некоторая реальная или условная частица вещества, которая может замещать, присоединять, высвобождать или быть каким-либо иным способом эквивалентна одному атому или одному иону водорода в кислотно-основных или ионообменных реакциях или одному электрону в окислительно-восстановительных реакциях.
Данное определение предложено Конгрессом ИЮПАК. Однако оно отличается громоздкостью, допускает использование в количественных соотношениях реально не существующих «условных» частиц и, к тому же, страдает неопределенностью: «эквивалент - частица …, которая эквивалентна…»(тавтология!).
Кроме того, при таком определении величина эквивалента вещества становится безразмерной и тождественной фактору эквивалентности.
Более конкретным и лишенным перечисленных недостатков является следующее определение: Эквивалент вещества (Э) – это количество вещества, приходящееся на единицу его валентного химического сродства.
Под валентным химическим сродством (W) понимается произведение валентности (модуля заряда для ионов, числа отданных или принятых электронов в окислительно-восстановительной реакции) частицы (В) на их количество в формуле вещества (n):
W = В· n [безразмерна].
Эталоном эквивалента вещества принят 1 моль атомарного водорода. Расчет эквивалента любого вещества производят по формуле
[моль].
Безразмерная величина, показывающая, какая часть моля элемента или вещества Х эквивалентна 1 моль атомарного водорода, называется фактором эквивалентности fэ (Х):
.
Масса одного эквивалента (эквивалентная масса) Мэ(Х), г/моль, определяется по формуле
Мэ(Х) = fэ (Х)·М(Х). (1.1)
Если в реакции участвуют газы, то могут быть найдены их эквивалентные объемы Vэ, л/моль, по формуле (при н.у.)
Vэ(Х) = fэ (Х)·22,4 .
Фактор эквивалентности химического элемента Х в его соединениях равен
fэ (Х) = 1:|с.о.| ,
где с.о. – степень окисления элемента Х в данном соединении.
Пример 1. Найти величины факторов эквивалентности и эквивалентных масс для азота в следующих веществах: NН3, НNО3, NО2.
Решение. Для определения фактора эквивалентности химического элемента необходимо определить его степень окисления. Степень окисления – это условный заряд атома элемента в молекуле, рассчитанный исходя из ее электронейтральности и на основе предположения, что молекула состоит из ионов. Водород и кислород в большинстве сложных веществ имеют постоянные степени окисления: водород - +1, кислород –2; но есть исключения. В гидридах активных металлов степень окисления водорода равна –1 (NаН-1), в пероксидах водорода и металлов степень окисления кислорода равна –1 (Н2О2 -1), во фториде кислорода - +2 (О+2F2).
Тогда степень окисления азота в NН3 равна –3, fэ (N) = 1:3,
Мэ(N) =14:3=4,67 г/моль.
Соответственно, для НNО3 степень окисления азота равна +5, fэ (N) = 1:5, Мэ(N) =14:5=2,8 г/моль.
В NО2 степень окисления азота равна +4, fэ (N) = 1:4,
Мэ(N) =14:4=3,6 г/моль.
Фактор эквивалентности вещества Х, участвующего в окислительно-восстановительном процессе, равен
fэ (Х) = 1: Nе,
где Nе – количество электронов, которые теряет или присоединяет одна молекула вещества Х.
Пример 2. Найти величину фактора эквивалентности, эквивалентные массу и объем для сероводорода Н2S, взаимодействующего с кислородом с образованием диоксида серы SO2 и паров воды.
Решение. В данном химическом процессе степень окисления серы изменяется от –2 (Н2S) до +4 (SO2). Следовательно, молекула Н2S теряет 6 электронов, т.е. fэ (Н2S) = 1:6; Мэ(Н2S) = 34:6 = 5,66 г/моль; Vэ(Н2S) = 22,4:6 = 3,73 л/моль.
Фактор эквивалентности вещества Х, участвующего в ионообменном процессе, равен
fэ (Х) = 1: (Ni·|zi|),
где Ni и zi - соответственно число и заряд ионов, которыми обменивается молекула реагирующего вещества со своим партнером.
Многоосновные кислоты НnА и многокислотные основания М(ОН)n имеют по n факторов эквивалентности: от 1 до 1/n. Если факторы эквивалентности соляной кислоты HCl и гидроксида натрия NаОН в обменных процессах всегда равны 1, то у серной кислоты Н2SО4 и гидроксида кальция Са(ОН)2 факторы эквивалентности равны 1 и 1/2, а у ортофосфорной кислоты Н3РО4 и гидроксида алюминия Аl(ОН)3 – 1, 1/2, 1/3.
Для солей фактор эквивалентности может быть найден по числу замещенных катионов или анионов.
Для солеобразующих оксидов фактор эквивалентности определяется числом катионов соответствующего оксиду основания или анионов соответствующей оксиду кислоты и их зарядом. В реакции между оксидом фосфора (V) и оксидом кальция
Р2О5 + СаО → Са3(РО4)2
фактор эквивалентности Р2О5, образующего два трехзарядных фосфат-иона (РО43-) равен 1/6, а для СаО, образующего один двухзарядный катион (Са2+), 1/2.
В некоторых реакциях молекулы одного вещества претерпевают разные превращения, например, одна часть молекул участвует в окислительно-восстановительном процессе, а другая часть молекул того же вещества – в процессе ионного обмена. Для такой реакции следует находить общий фактор эквивалентности, как сумму факторов эквивалентности, учитывающих каждое превращение данного вещества.
Пример 3. В нижеприведенных схемах реакций определите факторы эквивалентности исходных веществ:
а) LiOH + H3PO4 →Li2HPO4 + H2O
Молекула LiOH теряет в данной реакции один однозарядный ион ОН- , поэтому fэ (LiOH) = 1: (1·|-1|) = 1; молекула H3PO4 обменивается двумя однозарядными ионами Н+ , поэтому fэ (H3PO4) = 1: (2·|+1|) = 1:2.
б) Al2(SO4)3 +ВаCl2 →Ва SO4 + AlCl3
Величина fэ(Al2(SO4)3) может быть рассчитана либо по числу ионов алюминия, замещенных ионами бария, либо по числу сульфат-ионов, образующих с ионами бария осадок. И в том, и в другом случае результат одинаков:
fэ(Al2(SO4)3) = 1: (2·|+3|) = 1: (3·|-2|) = 1:6.
Величина fэ(ВаCl2)может быть рассчитана либо по числу ионов бария, замещенных ионами алюминия, либо по числу хлорид-ионов, образующих с ионами алюминия растворимую соль. fэ (ВаCl2)= 1: (1·|+2|) = 1: (2·|-1|) = 1:2.
в) ZnО + СО2 → ZnСО3
Величина fэ (ZnО), образующего один двухзарядный ион Zn 2+, равен 1/2;
fэ (СО2), образующего один двухзарядный ион (СО32-), равна 1/2.
г) Zn + Н2SO4 (конц.) → Н2S + Zn SO4 + Н2О
Превращаясь в Н2S-2, молекула Н2S+6 O4 присоединяет 8 электронов, т.е. fэ = 1/8; а образуя Zn SO4, молекула Н2SO4 теряет два иона Н+, т.е. fэ = 1/2. Общий фактор эквивалентности fэ(Н2SO4) = 1/8 + 1/2 = 5/8.
Пример 4. Выразить эквивалентную массу оксида, гидроксида, сульфата и хлорида металла.
Решение. Эквивалентная масса вещества в общем случае определяется по формуле (1.1). В частном случае ее можно представить как сумму эквивалентных масс составных частей молекулы или кристалла вещества.
1. Молекула или кристалл оксида любого элемента образованы атомами данного элемента и кислорода. Таким образом, эквивалентная масса оксида равна сумме эквивалентных масс элемента и кислорода:
Согласно формуле (1.1)
Мэ(О) = fэ (О)·М(О) = 16:2 = 8 г/моль.
Следовательно,
(1.2)
2. В состав гидроксида входят атомы металла и гидроксильные группы:
Согласно формуле (1.1)
Мэ(ОН-) = fэ (ОН-)·М(ОН-) = 17:1 = 17 г/моль.
Таким образом,
3. В молекулу сульфата металла входят ионы данного металла и сульфатные группы (SO4)2-:
Согласно формуле (1.1)
Мэ(SO4 2-) = fэ (SO4 2-)·М(SO4 2-) = 96:2 = 48 г/моль.
Таким образом,
4. Эквивалентную массу хлорида металла определяют по аналогии с предыдущими случаями:
Мэ(Cl-) = fэ (Cl-)·М(Cl-) = 35,5:1 = 35,5 г/моль
Закон эквивалентов. Массы (объемы) реагирующих друг с другом или образующихся в результате реакции веществ пропорциональны их эквивалентным массам Мэ (эквивалентным объемам для газов Vэ):
m1: Мэ1 = m2: Мэ2 = V1: Vэ1= V2: Vэ2.
Пример 5. Оксид марганца содержит 22,56% кислорода. Найти эквивалентную массу и валентность марганца в этом соединении. Составить формулу оксида.
Решение. Пусть масса оксида марганца равна 100 г, тогда масса кислорода будет составлять 22,56 г. На основании закона эквивалентов можно составить следующую пропорцию:
(1.3)
Примем Мэ(Мn) = А г/моль, тогда,
согласно формулы (1.2),
.
Исходя из формулы (1.1),
.
Подставляя полученные значения в
формулу (1.3), имеем
.
Решая уравнение относительно А, получим А = 27,5 г/моль.
Валентность марганца (по модулю совпадающую со степенью окисления) определим по формуле, связывающей молярную и эквивалентную массы элемента (1.1),
Мэ(Mn) = fэ (Mn )·М(Mn ) = М(Mn ) : В (Mn ),
откуда
Так как в оксидах кислород двухвалентен, получаем следующую формулу оксида марганца: MnO.
Пример 6. Рассчитать массу сахарозы С12Н22О11, если на ее окисление до углекислого газа СО2 в присутствии серной кислоты израсходовано 100 г перманганата калия КМnО4 (в кислой среде образуется МnSО4).
Решение. В данной реакции степень окисления марганца изменяется от +7 (КМnО4) до +2 (МnSО4), а углерода – от 0 (С12Н22О11) до +4 (СО2). Следовательно, для перманганата калия fэ = 1/5, а для сахарозы 1/48, так как в ее молекулу входят 12 атомов углерода. Тогда Мэ (КМnО4) = 158:5 = 31,6 г/моль, и Мэ(С12Н22О11) =342:48 =7,1 г/моль.
Согласно закону эквивалентов
Тогда m(С12Н22О11) = m(КМnО4)·7,1/31,6 =710/31,6=22,45 г.
Газовые законы. Параметры состояния, единицы измерения: V – объем, м3; Р – давление, Па; Т – температура, К; m – масса газа, кг; М – молярная масса газа, кг/моль; Мэ – молярная масса эквивалента газа, кг/моль; R – универсальная газовая постоянная, R = 8,314 Дж/(моль·К).
Нормальные условия (н.у.): 273,15 К(0 °С); 1,0133·105 Па (760 мм рт.ст.).
Объединенный газовый закон: р·V/Т = const.
Уравнение Клапейрона - Менделеева: р·V = m RТ/М.
Закон Авогадро: В равных объемах любых газов при одинаковых условиях (температура и давление) содержится одинаковое число соответствующих структурных единиц (молекул или атомов).
Следствия из закона Авогадро.
1 моль любого газа при данных условиях занимает один и тот же объем – молярный объем.
При нормальных условиях 1 моль различных газов занимает объем 22,4 л.
Относительная плотность одного газа по другому.
Молярную массу газа можно определить по его плотности ρ[г/л] :
Мгаза= 22,4· ρ.
Плотности газов при одинаковых условиях относятся как их молярные массы:
,
где D – относительная плотность одного газа по другому.