
- •Операционный усилитель. Основные понятия. Коэффициент усиления, коэф. Подавления синфазной составляющей, входные токи, напряжение смещения. Идеальный оу.
- •2.Параллельная отрицательная обратная связь в оу. Примеры: интегратор, дифференциатор, инвертор.
- •3.Последовательная отрицательная обратная связь в оу. Повторитель, неинвертирующий усилитель.
- •4.Дифференциальный усилитель на основе одного оу. Вывод соотношений между сопротивлениями резисторов. Достоинства, недостатки.
- •5. Дифференциальный усилитель с повторителями на входе. Достоинства, недостатки.
- •6. Инструментальный усилитель. Достоинства, недостатки.
- •7.Дифференциальный усилитель на основе двух оу. Достоинства, недостатки. Способ регулировки коэффициента усиления одним резистором.
- •8.«Точный» диод на основе одного оу. Достоинства, недостатки.
- •9.«Точный» диод в схеме с параллельной отрицательной обратной связью.
- •10.Измеритель среднего значения переменного напряжения. Назначение. Порядок расчета.
- •11.Фазочувствительный выпрямитель. Общее положение. Основные свойства.
- •12.Фчв с последовательным ключом. Расчет погрешностей от остаточного сопротивления ключа.
- •13.Фчв с параллельным ключом. Погрешность от остаточного сопротивления ключа.
- •14.Фчв с последователно-параллельным ключом. Достоинства, недостатки.
- •15. Погрешность делителя напряжения от разброса сопротивлений резисторов.
- •16. Погрешность усилителя от разброса сопротивлений.
- •17. Преобразователь напряжение-ток(схема Хауленда).Вывод расчетных соотношений
- •18. Преобразователь напряжение-ток с использованием повторителя напряжения. Расчетные соотношения.
- •19.Влияние напряжения смещения на погрешность оу с отрицательной обратной связью.
- •20.Способы компенсации напряжения смещения. Примеры реализации.
- •21.Погрешность усилителя от влияния входных токов оу. Способы уменьшения влияния входных токов.
- •23.Генератор прямоугольных колебаний на основе одного оу. Расчетные соотношения. Временные диаграммы.
- •24.Генератор прямоугольных колебаний с параметрическим стабилизатором в выходной цепи.
- •25.Генератор треугольных колебаний. Расчетные соотношения. Временные диаграммы. Генератор треугольных напряжений на основе 2-х оу.
- •Генератор треугольных колебаний с симметричной формой.
- •27.Формирователь шим последовательности с использованием генератора треугольного напряжения.
- •28. Генератор синусоидальных колебаний. Усилитель, фазосдвигающая цепь, баланс амплитуд, баланс фаз.
- •29. Генератор синусоидальных колебаний с фазосдвигающей цепью типа r-параллель. Расчетные соотношения. Достоинства, недостатки.
- •30.Генератор синусоидальных колебаний с фазосдвигающей цепью типа с-параллель. Расчетные соотношения. Достоинства, недостатки.
- •31.Генератор синусоидальных колебаний с последовательно-параллельной фазосдвигающей цепью (на основе моста Вина). Расчетные соотношения. Достоинства, недостатки.
- •36.Способы обеспечения баланса амплитуд. Необходимость в нелинейном элементе.
- •37.Обеспечение баланса амплитуд с использованием лампы накаливания. Коэффициент нелинейных искажений. Использование двойного т-образного моста для измерения коэф. Нелинейных искажений.
- •38.Использование полупроводниковых диодов для обеспечения баланса амплитуд на примере генератора с мостом Вина. Расчетные соотношения.
- •39. Структурная схема блока питания. Назначение основных элементов.
- •40. Однополупериодный выпрямитель. Выбор диода. Связь между Um, u0, u. Достоинства, недостатки.
- •41. Двухполупериодный выпрямитель со средней точкой. Выбор диодов. Связь между Un n, u0, u. Достоинства, недостатки
- •42. Мостовая схема двухполупериодного выпрямителя. Выбор диода. Связь между Un , u0, u. Достоинства, недостатки.
- •43. Сглаживающий фильтр. Расчет фильтрующего конденсатора. Вывод расчетных соотношений
- •44. Параметрический стабилизатор напряжения. Расчет коэффициента стабилизации, выходного сопротивления. Достоинства, недостатки.
- •45. Компенсационные стабилизаторы напряжения. С параллельным и последовательным регулирующим элементом. Структурная схема. Назначение и работа элементов стабилизаторов. Пример исполнения.
- •46. Свойство стабилизаторов 78хх, 79ххю Типовая схема включения. Стабилизатор с изменяемым входным напряжением. Стабилизатор тока Основные характеристики стабилизаторов семейства 78хх 79хх.
- •47. Основные технические характеристики стабилизаторов 78хх на примере 7805.
- •48. Стабилизатор с параллельным регулирующим элементом tl431. Схема включения, основные технические характеристики.
- •49. Импульсные источники напряжения. Структурная схема. Назначение элементов. Достоинства, недостатки.
- •50. Понижающий импульсный источник. Расчетные соотношения.
- •51. Повышающий источник напряжения. Расчетные соотношения.
- •52. Инвертирующий источник напряжения. Расчетные соотношения.
- •53. Универсальная микросхема импульсного стабилизатора мс34063 (33063). Структурная схема. Назначение элементов. Основные технические характеристики.
- •54. Пример понижающего стабилизатора на основе микросхемы мс34063.
- •55. Пример повышающего стабилизатора на основе микросхемы мс34063.
- •56. Пример инвертирующего стабилизатора на основе микросхемы мс34063.
- •57. Измерительные преобразователи для емкостных датчиков. Основные типы емкостных датчиков. Особенности емкостных датчиков. Паразитные емкости.
- •58. Функциональная схема измерительного преобразователя для емкостного датчика с изолированными электродами.
- •59. Функциональная схема измерительного преобразователя для емкостного датчика с заземленным электродом.
- •60. Способ уменьшения влияния паразитных емкостей с использованием защитных электродов и повторителя напряжения. Эквипотенциальное экранирование.
- •61. Функциональная схема измерительного преобразователя для дифференциального емкостного датчика с изолированными электродами.
- •62. Функциональная схема измерительного преобразователя для дифференциального емкостного датчика с заземленным средним электродом.
- •63. Функциональная схема для дифференциального емкостного датчика с ратиометрическим выходным сигналом.
- •64. Индуктивные датчики. Принцип действия. Примеры использования. Измерительные преобразователи
13.Фчв с параллельным ключом. Погрешность от остаточного сопротивления ключа.
Рис.6.5. Схема ФЧВ с параллельным ключом
Оценим погрешность схемы от несовершенства ключа. Для этого, как и ранее, воспользуемся эквивалентной схемой ФЧВ для замкнутого ключа (рис.6.6а) и для разомкнутого ключа (рис.6.6б).
Рис.6.6. Эквивалентные схемы ФЧВ для замкнутого состояния ключа (а) и для разомкнутого состояния ключа (б)
Коэффициент усиления схемы рис 6.6а равен:
,
.
Относительная
погрешность, с учётом того, что
,
равна
.
Для схемы, изображённой на рис.6.6б:
.
Относительная погрешность имеет вид:
.
В данной схеме требования к значению сопротивления резистора аналогичны предыдущей схеме. Однако, ключом удобнее управлять относительно общей точки схемы.
14.Фчв с последователно-параллельным ключом. Достоинства, недостатки.
Рис.6.7. Схема ФЧВ с последовательно-параллельным ключом
В данной схеме
используется комбинация из двух ключей
,
,
состояния которых противоположны, то
есть при заданном управляющем напряжении
один из них замкнут, а другой разомкнут.
Понятно, что в данном случае схема имеет
коэффициент усиления, равный либо
единице (
– замкнут,
– разомкнут), либо минус единице (
– разомкнут,
– замкнут).
Как и прежде оценим погрешность от несовершенства ключей. Будем считать для простоты, что сопротивления ключей в разомкнутом состоянии , а в замкнутом – . С учетом этого, эквивалентные схемы для различного состояния ключей выглядят так, как показано на рис.6.8.
Рис.6.8. Эквивалентные схемы ФЧВ с последовательно-параллельным ключом
Для схемы, представленной на рис.6.8а, погрешность от несовершенства ключей можно записать следующим образом:
.
Аналогичная погрешность получается и для противоположного состояния ключа – рис. 6.8б:
.
Достоинства:
– для реальных значений современных ключей ФЧВ можно считать идеальным (без учета погрешности ОУ);
– удобство реализации (существуют микросхемы с нормально замкнутыми и нормально разомкнутыми контактами управляемыми одним сигналом).
Недостатки:
– различное входное сопротивление.
15. Погрешность делителя напряжения от разброса сопротивлений резисторов.
Простейший делитель напряжения
Выпускаемые резисторы имеют разброс значений сопротивлений от номинального.
Так например, использование резисторов с 5% разбросом в схеме делителя напряжения:
или
16. Погрешность усилителя от разброса сопротивлений.
Выпускаемые резисторы имеют разброс значений сопротивлений от номинального.
Так например, использование резисторов с 5% разбросом в схеме инвертирующего и неинвертирующего ОУ может привести к 10% отклонению Kус, в наихудшем случае:
или