
- •Операционный усилитель. Основные понятия. Коэффициент усиления, коэф. Подавления синфазной составляющей, входные токи, напряжение смещения. Идеальный оу.
- •2.Параллельная отрицательная обратная связь в оу. Примеры: интегратор, дифференциатор, инвертор.
- •3.Последовательная отрицательная обратная связь в оу. Повторитель, неинвертирующий усилитель.
- •4.Дифференциальный усилитель на основе одного оу. Вывод соотношений между сопротивлениями резисторов. Достоинства, недостатки.
- •5. Дифференциальный усилитель с повторителями на входе. Достоинства, недостатки.
- •6. Инструментальный усилитель. Достоинства, недостатки.
- •7.Дифференциальный усилитель на основе двух оу. Достоинства, недостатки. Способ регулировки коэффициента усиления одним резистором.
- •8.«Точный» диод на основе одного оу. Достоинства, недостатки.
- •9.«Точный» диод в схеме с параллельной отрицательной обратной связью.
- •10.Измеритель среднего значения переменного напряжения. Назначение. Порядок расчета.
- •11.Фазочувствительный выпрямитель. Общее положение. Основные свойства.
- •12.Фчв с последовательным ключом. Расчет погрешностей от остаточного сопротивления ключа.
- •13.Фчв с параллельным ключом. Погрешность от остаточного сопротивления ключа.
- •14.Фчв с последователно-параллельным ключом. Достоинства, недостатки.
- •15. Погрешность делителя напряжения от разброса сопротивлений резисторов.
- •16. Погрешность усилителя от разброса сопротивлений.
- •17. Преобразователь напряжение-ток(схема Хауленда).Вывод расчетных соотношений
- •18. Преобразователь напряжение-ток с использованием повторителя напряжения. Расчетные соотношения.
- •19.Влияние напряжения смещения на погрешность оу с отрицательной обратной связью.
- •20.Способы компенсации напряжения смещения. Примеры реализации.
- •21.Погрешность усилителя от влияния входных токов оу. Способы уменьшения влияния входных токов.
- •23.Генератор прямоугольных колебаний на основе одного оу. Расчетные соотношения. Временные диаграммы.
- •24.Генератор прямоугольных колебаний с параметрическим стабилизатором в выходной цепи.
- •25.Генератор треугольных колебаний. Расчетные соотношения. Временные диаграммы. Генератор треугольных напряжений на основе 2-х оу.
- •Генератор треугольных колебаний с симметричной формой.
- •27.Формирователь шим последовательности с использованием генератора треугольного напряжения.
- •28. Генератор синусоидальных колебаний. Усилитель, фазосдвигающая цепь, баланс амплитуд, баланс фаз.
- •29. Генератор синусоидальных колебаний с фазосдвигающей цепью типа r-параллель. Расчетные соотношения. Достоинства, недостатки.
- •30.Генератор синусоидальных колебаний с фазосдвигающей цепью типа с-параллель. Расчетные соотношения. Достоинства, недостатки.
- •31.Генератор синусоидальных колебаний с последовательно-параллельной фазосдвигающей цепью (на основе моста Вина). Расчетные соотношения. Достоинства, недостатки.
- •36.Способы обеспечения баланса амплитуд. Необходимость в нелинейном элементе.
- •37.Обеспечение баланса амплитуд с использованием лампы накаливания. Коэффициент нелинейных искажений. Использование двойного т-образного моста для измерения коэф. Нелинейных искажений.
- •38.Использование полупроводниковых диодов для обеспечения баланса амплитуд на примере генератора с мостом Вина. Расчетные соотношения.
- •39. Структурная схема блока питания. Назначение основных элементов.
- •40. Однополупериодный выпрямитель. Выбор диода. Связь между Um, u0, u. Достоинства, недостатки.
- •41. Двухполупериодный выпрямитель со средней точкой. Выбор диодов. Связь между Un n, u0, u. Достоинства, недостатки
- •42. Мостовая схема двухполупериодного выпрямителя. Выбор диода. Связь между Un , u0, u. Достоинства, недостатки.
- •43. Сглаживающий фильтр. Расчет фильтрующего конденсатора. Вывод расчетных соотношений
- •44. Параметрический стабилизатор напряжения. Расчет коэффициента стабилизации, выходного сопротивления. Достоинства, недостатки.
- •45. Компенсационные стабилизаторы напряжения. С параллельным и последовательным регулирующим элементом. Структурная схема. Назначение и работа элементов стабилизаторов. Пример исполнения.
- •46. Свойство стабилизаторов 78хх, 79ххю Типовая схема включения. Стабилизатор с изменяемым входным напряжением. Стабилизатор тока Основные характеристики стабилизаторов семейства 78хх 79хх.
- •47. Основные технические характеристики стабилизаторов 78хх на примере 7805.
- •48. Стабилизатор с параллельным регулирующим элементом tl431. Схема включения, основные технические характеристики.
- •49. Импульсные источники напряжения. Структурная схема. Назначение элементов. Достоинства, недостатки.
- •50. Понижающий импульсный источник. Расчетные соотношения.
- •51. Повышающий источник напряжения. Расчетные соотношения.
- •52. Инвертирующий источник напряжения. Расчетные соотношения.
- •53. Универсальная микросхема импульсного стабилизатора мс34063 (33063). Структурная схема. Назначение элементов. Основные технические характеристики.
- •54. Пример понижающего стабилизатора на основе микросхемы мс34063.
- •55. Пример повышающего стабилизатора на основе микросхемы мс34063.
- •56. Пример инвертирующего стабилизатора на основе микросхемы мс34063.
- •57. Измерительные преобразователи для емкостных датчиков. Основные типы емкостных датчиков. Особенности емкостных датчиков. Паразитные емкости.
- •58. Функциональная схема измерительного преобразователя для емкостного датчика с изолированными электродами.
- •59. Функциональная схема измерительного преобразователя для емкостного датчика с заземленным электродом.
- •60. Способ уменьшения влияния паразитных емкостей с использованием защитных электродов и повторителя напряжения. Эквипотенциальное экранирование.
- •61. Функциональная схема измерительного преобразователя для дифференциального емкостного датчика с изолированными электродами.
- •62. Функциональная схема измерительного преобразователя для дифференциального емкостного датчика с заземленным средним электродом.
- •63. Функциональная схема для дифференциального емкостного датчика с ратиометрическим выходным сигналом.
- •64. Индуктивные датчики. Принцип действия. Примеры использования. Измерительные преобразователи
47. Основные технические характеристики стабилизаторов 78хх на примере 7805.
Uвых=4,2 -5,2 В
Нестабильность по Uвых при изм. Uвх до 7- 25 В не более 50 мВ.
Нестабильность по Iн при изменении Iвх.
Нестабильность по вых. Напряжению в МВ при изменении входного
78 05
Uвх
1 3 Uвых
2
Нестабильность по току нагрузки <25мА при изменении тока 0,25-0.75 А
48. Стабилизатор с параллельным регулирующим элементом tl431. Схема включения, основные технические характеристики.
В стабилизаторахпаралельного принципа действия РЭ устанавливается параллельная нагрузка и его проводимость или сопротивление изменяется таким образом,чтобы коэф. Деления образованный параллельным соединением сопротивление Rн и Rрэ и баланст Rб был изменен
Простейшая схема параллельного стабилизатора напряжение –параметрический стабл-р,где в качестве РЭ используется стабилитрон.
49. Импульсные источники напряжения. Структурная схема. Назначение элементов. Достоинства, недостатки.
Импульсный стабилизатор напряжения- это стаб-р напряжения, в котором регулирующий элемент работает в ключевом режиме, т.е. большую часть времени он находится либо в режиме отсечки, когда его сопротивление максимальное, либо в режиме насыщения-с минимальным сопротивлением, а значит может рассматривается, как ключ. Плавное изменения напряжения происходит благодаря наличию интегрирующего элемента: напряжение повышается по мере накопления им энергии и снижается по мере отдачи ее в нагрузку. Такой режим работы позволяет значительно снизить потери энергии, а также улучшить массогабаритные показатели, однако имеет свои особенности
Основным недостатком компенсационных стабилизаторов напряжения является КПД, в лучшем случае достигающий 70%. Достоинство – высокая стабильность и низкий уровень шумов. Для уменьшения мощности, рассеиваемой в регулирующем транзисторе, его используют в ключевом режиме, применяя при этом L-C – фильтр.
ИОН – источник опорного напряжения
СУ – сравнивающее устройство
КЭ
– ключевой элемент
τ1
τ2
Различают три вида импульсных источника питания:
Понижающий.
Повышающий.
Инвертирующий.
50. Понижающий импульсный источник. Расчетные соотношения.
Функциональная
схема понижающего стабилизатора
представлена на рис.1.32. В этой схеме
выходное напряжение может быть только
меньше входного (если ключ замкнут, то
).
Рис.1.32. Функциональная схема понижающего стабилизатора: СУ – схема управления, изменяющая соотношение включенного и выключенного состояния ключевого элемента
Выходное напряжение зависит от входного и отношения времени нахождения транзистора VT во включенном состоянии к периоду коммутации τ.
,
где
,
– время нахождения
VT
в выключенном состоянии.
Работает преобразователь следующим образом. Когда транзистор VT включен (насыщен), источник входного напряжения подключен к катушке индуктивности L и нагрузке. Ток в катушке вырастает со скоростью
,
или
,
где
– изменение тока в дросселе L
за время включенного состояния транзистора
VT.
К концу времени
ток
достигнет пикового значения
:
.
Ток питает нагрузку и заряжает конденсатор С.
Когда транзистор
VT
выключается, напряжение на дросселе L
становится равным
.
Ток продолжает протекать в том же
направлении, но он начинает спадать.
Теперь дроссель питает конденсатор и
нагрузку
.
Транзистор включается как раз перед
тем, как
.
Максимальный выходной ток составляет
половину
.
Среднее значение тока, протекающего
через L
в течение интервала
.
Из соотношения
можно найти L
.
Емкость конденсатора фильтра
.
Поскольку конденсатор
фильтра должен обеспечивать выходной
ток в течение времени
,
то есть тогда, когда
,
а максимальное значение отдаваемого
им тока
,
то
.
Соотношение между
временами
можно найти из условия одинаковости
средних токов нагрузки, протекающих в
соответствующие интервалы времени.
.
Откуда
.
Для нахождения КПД будем считать, что коммутационные потери равны нулю. Тогда
,
,
,
Поскольку
,
можно записать
.
Тогда КПД:
.
Если
,
,
,
,
то
.
Д
ля
источника непрерывного действия с
последовательным регулирующим элементом
.