
- •1.Модель атома по Резерфорду. Противоречия теории Резерфорда.
- •2.Теория строения атома водорода по Бору. Квантово-механическая модель атома.
- •4. Волновая функция.(ѱ)
- •5.Квантовые числа.
- •7. Многоэлектронные атомы.
- •6. Типы электронных орбиталей. Атомные орбитали.
- •8.Принцип Паули. Правило Гунди.
- •10.Правило Клечковского I и II.
- •11. Периодическая система элементов Менделеева. Периоды, группы. Периодическое изменение свойств хим. Элементов.
- •12. Закон Мозли.
- •13. Энергия ионизации.
- •14. Сродство к электрону.
- •15. Электроотрицательность. Их изменение в периоде и группе с ростом заряда ядра атомы.
- •16.Радиусы атомов.
- •17. Классы неорганических веществ
- •18. Сложные вещества (оксиды,кислоты,основания,соли). Простые вещества( металлы,неметаллы)
- •19.Номенклатура
- •20. Хим.Свойства. Хим.Связь. Метод валентности связей.
- •21. Энергия и длина связи. Полярность связи.
- •В большинстве случаев - чем больше энергия связи, тем меньше длина связи.
- •22.Дипальный момент.
- •23.Направленность ковалентной связи. Гибридизация атомных орбиталей. Типы гибридизации(sp-,sp2-,sp3-) на примерах. Насыщаемость ковалентной связи.
- •24.Ионная связь. Водородная связь
- •26. Хим.Термодинамика.1-ый закон термохимии(Лавуазье-Лапласа) 2-ой закон термохимии(Гесса)
- •Закон Гесса Тепловой эффект (∆н) химической реакции (при постоянных р и т) зависит от природы и физического состояния исходных веществ и продуктов реакции и не зависит от пути её протекания.
- •26.Основные понятия термодинамики: система, типы систем(изолированные,замкнутые).
- •28. Изотермические, изобарические, изохорические, адиабатические процессы.
- •29.Внутр. Энергия системы. Теплота.
- •30. Работа 1-го закона термодинамики.
- •Всё тепло, сообщенное системе, расходуется на изменение энтальпии системы.
- •31. Энтальпия образования хим. Соединений. Следствие из закона Гесса.
- •33. Термодинамическая вероятность состояния системы
- •34.Направление и предел протекания процессов в изолированных системах. 2-ой закон термодинамики.
- •35. Энтропийный и энтальпийный факторы химических реакций, протекающих в изобрано-изотермических условиях.
- •36.Энергия Гиббса( g). Константа хим.Равновесия, её связь с энергией Гиббса.
- •37. Химическая кинетика
- •38. Гомогенные и гетерогенные реакции.
- •39. Фаза. Скорость реакций. Факторы влияния на скорость х.Р..Энергия активации хим.Реакции, зависимость от неё скорости.
- •40. Закон действия масс. Расчёты.
- •41. Правило Ван-Гоффа. Уравнение Аррениуса.
- •43. Флотация. Адсорбция на поверхности твёрдых тел и жидкостей.
- •44. Пав. Изотерма адсорбции. Лэнгмюра.Участки изотермы.
- •45. Хроматография. Катализ. Гомогенный и гетерогенный катализ.
- •46. Обратимые и необратимые реакции. Хим.Равновесие. Принцип Ле-Шателье.
- •47. Влияние концентрации, температуры, давления на смещение хим.Равновесия.
- •48.Понятие о дисперсных системах. Дисперсная фаза. Дисперсная среда. Гомогенные и гетерогенные дисперсные системы.
- •49. Физическая и химическая теория растворов: сольватация, гидротация.
- •50. Способы выражения концентрации растворов.
- •51. Осмос. Закон Ван-Гоффа.
- •52. Давление пара растворителя над растворами. 1-ый и 2-ой законы Рауля.
- •53. Электролитическая диссоциация. Слабые и сильные электролиты. Константа диссоциации. Закон разбавления Оствельда.
- •54. Коэфицент активности(f),ионная сила раствора.
- •55. Электролитическая диссоциация воды, водородный показатель (pH).
- •57. Гидролиз солей. Степень гидролиза.
- •58. Свойства кислот, оснований, солей с точки зрения теории эленктролитической диссоциации.
- •59. Коллоидные растворы. Правило Пескова-Фаянса.
- •60. Оптические, кинетические, энтропические свойства коллоидных растворов. Кинетическая и агрегативная устойчивость коллоидных систем.
- •Броуновское движение
- •61. Коагуляция и седиментация. Правило Шульце-Гарди.
- •62. Окислительно-Восстановительные процессы. Типы овр. Электрохимические процессы.
- •63. Электродный потенциал. Гальванический элемент Даниэля-Якоби. Электродвижушая сила элемента. Стандартные электродные потенциалы и их измерение.
- •67. Электролиз. Последовательность электродных процессов. Анодные и катодные процессы.
- •68.Закон Фарадея (1-ый и 2-ой). Применение электролиза. Первый закон Фарадея
- •Второй закон Фарадея
- •69.Коррозия металлов. Химическая коррозия. Электрокоррозия и гальвинокоррозия. Защита металлов от коррозии. Антикоррозиционное летурование металлов. Обработка коррозиционной среды.
- •71. Жескость воды. Метод её устранения.
- •27.Процесс,цикл.
- •4.Направление и предел протекания процессов в изолированных системах. 2-ой закон термодинамики.
- •64. Стандартный водородный электрод. Водородная шкала потенциалов. Потенциалы металлических электродов. Потенциалы газовых электронов. Формула Нернста.
30. Работа 1-го закона термодинамики.
Существует несколько формулировок I-го закона термодинамики:
1. Если в каком-либо процессе исчезает энергия определенного вида, то взамен появляется энергия другого вида в эквивалентном количестве.
2. В изолированной системе полный запас энергии не изменяется.
3. Вечный двигатель первого рода невозможен.
Изохорный процесс (V = const)
Т.к. V=const, то PdV=0
Всё тепло, переданное системе, идёт на изменение ее внутренней энергии.
Изобарный процесс (Р = const)
Т.к. P=const , тогда PdV=d(PV), из чего следует
dQP=dUp+d(PV)=d(UP+PV)=dH
Всё тепло, сообщенное системе, расходуется на изменение энтальпии системы.
Изотермический процесс (Т = const)
δQT=PdV В изотермическом процессе всё тепло, сообщенное системе, тратится на работу против сил внешнего давления.
Адиабатный процесс (d Q = 0)
dU=PdV.
При адиабатном процессе работа совершается системой за счет убыли её внутренней энергии.
31. Энтальпия образования хим. Соединений. Следствие из закона Гесса.
Первое следствие закона Гесса. Энтальпия химической реакции равна сумме энтальпий образования продуктов реакции за вычетом суммы энтальпий образования исходных веществ. Энтальпия образования вещества В() это энтальпия реакции образования 1 моль соединения из простых веществ, устойчивых при стандартных условиях.
Второе следствие закона Гесса. Энтальпия химической реакции равна сумме энтальпий сгорания исходных веществ за вычетом суммы энтальпий сгорания продуктов реакции.
Энтальпия
сгорания вещества В
это
энтальпия реакции окисления кислородом
1 моль соединения до образования
высших оксидов.
32. Энтропия. Самопроизвольные и несамопроизвольные процессы.
Энтропия– мера неупорядоченности системы.
Самопроизвольные– процессы, которые идут сами собой, на них не затрачивается работа, они сами могут производить ее (движение камней в горах, Na с большой скоростью движется по поверхности, так как идет выделение водорода проверить.)
Несамопроизвольные
– процессы, которые не могут идти сами собой, на них затрачивается работа.
33. Термодинамическая вероятность состояния системы
Термодинамическая вероятность — число способов, которыми может быть реализовано состояние физической системы. Втермодинамике состояние физической системы характеризуется определёнными значениями плотности, давления, температуры и др. измеримых величин.
Вероятность термодинамическая (обозначается W) равна числу микросостояний, реализующих данное макросостояние, из чего следует, что W3 = 1 . Вероятность термодинамическая связана с одной из основных макроскопических характеристик системы энтропией S соотношением Больцмана: S= k * ln(W), где k — Больцмана постоянная.
34.Направление и предел протекания процессов в изолированных системах. 2-ой закон термодинамики.
Второй закон термодинамики - физический закон, имеющий две эквивалентные формулировки: -1- невозможен процесс, единственным результатом которого является передача энергии в форме теплоты от менее нагретого тела к более нагретому телу; -2- невозможен периодический процесс, единственным результатом которого является превращение теплоты, полученной от нагревателя, в эквивалентную ей работу.