Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
SHP_modeling_redact_ZH.doc
Скачиваний:
10
Добавлен:
01.05.2025
Размер:
6.52 Mб
Скачать

34. Понятие адекватность» модели. Особенности оценки адекватности моделей.

Важнейшим требованием к модели является требование адекватности (соответствия) ее реальному объекту (процессу, системе и т.д.) относительно выбранного множества его характеристик и свойств. Под адекватностью модели понимают правильное качественное и количественное описание объекта (процесса) по выбранному множеству характеристик с некоторой разумной степенью точности. При этом имеется в виду адекватность не вообще, а адекватность по тем свойствам модели, которые являются для исследователя существенными. Полная адекватность означает тождество между моделью и прототипом.

Математическая модель может быть адекватна относительно одного класса ситуаций (состояние системы + состояние внешней среды) и не адекватна относительно другого. Модель типа «черный ящик» адекватна, если в рамках выбранной степени точности она функционирует так же, как и реальная система, т.е. определяет тот же оператор преобразования входных сигналов в выходные. В некоторых простых ситуациях численная оценка степени адекватности не представляет особой трудности. Например, задача аппроксимации заданного множества экспериментальных точек некоторой функцией. Всякая адекватность относительна и имеет свои границы применения. Если в простых случаях бывает все ясно, то в сложных случаях неадекватность модели бывает не столь ясной. Применение неадекватной модели приводит либо к существенному искажению реального процесса или свойств (характеристик) изучаемого объекта, либо к изучению несуществующих явлений, процессов, свойств и характеристик. В последнем случае проверка адекватности не может осуществляться на чисто дедуктивном (логическом, умозрительном) уровне. Необходимо уточнение модели на основании информации из других источников.

Особенности оценки адекватности:

1. Если экспериментальная модель адекватна, ее можно использовать для принятия решений относительно системы, которую она представляет, как если бы они принимались на основании экспериментов с реальной моделью.

2.Сложность или простота оценки адекватности зависит от того существует ли на данный момент версия этой системы.

3. Имитационная модель сложной системы может только приблизительно соответствовать оригиналу, независимо от того сколько усилий потрачено на разработку, т.к. абсолютно адекватных моделей не существует.

4. Имитационная модель всегда разрабатывается для определенного множества целей. Модель, которая адекватна для одной может быть неадекватна для другой.

5. Оценка адекватности модели должна производиться с участием лиц, принимающих решение по оценки проектов системы.

6. Оценка адекватности должна проводиться на всем протяжении их разработки и применения.

35. Базовые принципы оценки адекватности моделей. Методы обеспечения адекватности моделей.

Принципы оценки адекватности:

1. Если экспериментальная модель адекватна, ее можно использовать для принятия решений относительно системы, которую она представляет, как если бы они принимались на основании экспериментов с реальной моделью.

2.Сложность или простота оценки адекватности зависит от того существует ли на данный момент версия этой системы.

3. Имитационная модель сложной системы может только приблизительно соответствовать оригиналу, независимо от того сколько усилий потрачено на разработку, т.к. абсолютно адекватных моделей не существует.

4. Имитационная модель всегда разрабатывается для определенного множества целей. Модель, которая адекватна для одной может быть неадекватна для другой.

5. Оценка адекватности модели должна производиться с участием лиц, принимающих решение по оценки проектов системы.

6. Оценка адекватности должна проводиться на всем протяжении их разработки и применения.

Методы обеспечения адекватности:

1. Сбор высококачественной информации о системе: -консультации со специалистами; –наблюдение за системой; - изучение соответствующей теории; - изучение результатов, полученных в ходе моделирования подобных систем; - использование опыта, интуиции разработчика.

2. Регулярное взаимодействие с заказчиком

3. Документальная поддержка предположений и их структурированный критический анализ: - Необходимо записывать все предположения и ограничения, принятые для имитационной модели; - необходимо производить структурный разбор концептуальной модели с присутствием специалистов по изучаемым вопросам => Из этого следует валидация концептуальной модели.

4. Валидация компонентов модели количественными методами.

5. Валидация выходных данных всей имитационной модели(Проверка идентичности выходных данных модели и выходных данных, ожидаемых от реальной системы)

6. Анимация процесса моделирования

Обобщенная технология оценки и управления качеством модели первого класса:

1 – формирование цепей функционирования объекта 2- формирование входных сигналов 3- формирование целей моделирования 4 – управление качеством моделирования 5,6 – управление параметрами, структурой, концептуальным описанием

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]