- •1. Сущность понятий модель и моделирование. Роль моделей в процессе познания.
- •2. Характеристика модели как системы.
- •3. Классификация видов моделирования
- •5. Формальная модель системы
- •6. Типовые математические схемы моделей. Особенности d-схем и a-схем.
- •7. Типовые математические схемы моделей. Особенности f-схем и p-схем.
- •8. Основные понятия теории массового обслуживания.
- •9. Поток заявок и его характеристики.
- •10. Простейший поток заявок и его особенности
- •11. Стратегии управления потоками заявок в смо
- •12. Базовые модели смо. Обозначения смо
- •13. Параметры и характеристики смо
- •14. Аналитические модели одноканальных смо с отказами и с ожиданием
- •15. Аналитические модели многоканальных смо с отказами и с ожиданием.
- •16. Сущность имитационного моделирования. Различия имитационных и аналитических моделей.
- •17. Принципы построения моделирующих алгоритмов.
- •18. Сущность метода статистического моделирования
- •19. Способы формирования случайных чисел. Аппаратный и физический.
- •20. Способы формирования случайных чисел. Алгоритмический метод.
- •21. Моделирование случайных событий
- •22. Моделирование дискретных случайных величин
- •23. Методы моделирования непрерывных случайных величин. Сущность метода обратной функции.
- •26. Моделирование случайных величин, распределенных по нормальному, равномерному, экспоненциальному законам.
- •27. Основные требования к моделям
- •28. Основные этапы моделирования систем
- •29. Концептуальная модель системы
- •31. Правила и способы формализации процессов обработки информации.
- •32. Алгоритмизация процессов обработки информации. Последовательность разработки алгоритмов.
- •33. Основные свойства моделей.
- •34. Понятие адекватность» модели. Особенности оценки адекватности моделей.
- •35. Базовые принципы оценки адекватности моделей. Методы обеспечения адекватности моделей.
- •36.Схема оценки адекватности моделей о. Балчи.
- •37. Методика оценки адекватности моделей.
- •38. Основные этапы проведения экспериментальных исследований с помощью моделей. Типы вычислительных экспериментов.
- •39. Стратегическое и тактическое планирование машинных экспериментов.
- •40. Сущность активного эксперимента, его преимущества.
- •41. Основные понятия теории планирования экспериментов.
- •42. Классификация средств моделирования, сравнительная оценка основных классов средств моделирования.
- •43. Основные требования к инструментальным средствам моделирования
- •44. Общая характеристика gpss World, построение программ в gpss World.
- •45 Общая характеристика системы arena, построение моделей в системе arena .
- •46 Содержание обработки результатов экспериментов.
- •47 Оценка точности и достоверности результатов моделирования.
- •48 Проверка гипотез о равенстве средних и о равенстве дисперсий.
- •49 Методы понижения дисперсии.
- •50 Анализ и интерпретация результатов моделирования на эвм. Дисперсионный анализ результатов экспериментов.
34. Понятие адекватность» модели. Особенности оценки адекватности моделей.
Важнейшим требованием к модели является требование адекватности (соответствия) ее реальному объекту (процессу, системе и т.д.) относительно выбранного множества его характеристик и свойств. Под адекватностью модели понимают правильное качественное и количественное описание объекта (процесса) по выбранному множеству характеристик с некоторой разумной степенью точности. При этом имеется в виду адекватность не вообще, а адекватность по тем свойствам модели, которые являются для исследователя существенными. Полная адекватность означает тождество между моделью и прототипом.
Математическая модель может быть адекватна относительно одного класса ситуаций (состояние системы + состояние внешней среды) и не адекватна относительно другого. Модель типа «черный ящик» адекватна, если в рамках выбранной степени точности она функционирует так же, как и реальная система, т.е. определяет тот же оператор преобразования входных сигналов в выходные. В некоторых простых ситуациях численная оценка степени адекватности не представляет особой трудности. Например, задача аппроксимации заданного множества экспериментальных точек некоторой функцией. Всякая адекватность относительна и имеет свои границы применения. Если в простых случаях бывает все ясно, то в сложных случаях неадекватность модели бывает не столь ясной. Применение неадекватной модели приводит либо к существенному искажению реального процесса или свойств (характеристик) изучаемого объекта, либо к изучению несуществующих явлений, процессов, свойств и характеристик. В последнем случае проверка адекватности не может осуществляться на чисто дедуктивном (логическом, умозрительном) уровне. Необходимо уточнение модели на основании информации из других источников.
Особенности оценки адекватности:
1. Если экспериментальная модель адекватна, ее можно использовать для принятия решений относительно системы, которую она представляет, как если бы они принимались на основании экспериментов с реальной моделью.
2.Сложность или простота оценки адекватности зависит от того существует ли на данный момент версия этой системы.
3. Имитационная модель сложной системы может только приблизительно соответствовать оригиналу, независимо от того сколько усилий потрачено на разработку, т.к. абсолютно адекватных моделей не существует.
4. Имитационная модель всегда разрабатывается для определенного множества целей. Модель, которая адекватна для одной может быть неадекватна для другой.
5. Оценка адекватности модели должна производиться с участием лиц, принимающих решение по оценки проектов системы.
6. Оценка адекватности должна проводиться на всем протяжении их разработки и применения.
35. Базовые принципы оценки адекватности моделей. Методы обеспечения адекватности моделей.
Принципы оценки адекватности:
1. Если экспериментальная модель адекватна, ее можно использовать для принятия решений относительно системы, которую она представляет, как если бы они принимались на основании экспериментов с реальной моделью.
2.Сложность или простота оценки адекватности зависит от того существует ли на данный момент версия этой системы.
3. Имитационная модель сложной системы может только приблизительно соответствовать оригиналу, независимо от того сколько усилий потрачено на разработку, т.к. абсолютно адекватных моделей не существует.
4. Имитационная модель всегда разрабатывается для определенного множества целей. Модель, которая адекватна для одной может быть неадекватна для другой.
5. Оценка адекватности модели должна производиться с участием лиц, принимающих решение по оценки проектов системы.
6. Оценка адекватности должна проводиться на всем протяжении их разработки и применения.
Методы обеспечения адекватности:
1. Сбор высококачественной информации о системе: -консультации со специалистами; –наблюдение за системой; - изучение соответствующей теории; - изучение результатов, полученных в ходе моделирования подобных систем; - использование опыта, интуиции разработчика.
2. Регулярное взаимодействие с заказчиком
3. Документальная поддержка предположений и их структурированный критический анализ: - Необходимо записывать все предположения и ограничения, принятые для имитационной модели; - необходимо производить структурный разбор концептуальной модели с присутствием специалистов по изучаемым вопросам => Из этого следует валидация концептуальной модели.
4. Валидация компонентов модели количественными методами.
5. Валидация выходных данных всей имитационной модели(Проверка идентичности выходных данных модели и выходных данных, ожидаемых от реальной системы)
6. Анимация процесса моделирования
Обобщенная технология оценки и управления качеством модели первого класса:
1
– формирование цепей функционирования
объекта 2- формирование входных сигналов
3- формирование целей моделирования 4 –
управление качеством моделирования
5,6 – управление параметрами, структурой,
концептуальным описанием
