Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Биохимия.ру полный курс лекций

.pdf
Скачиваний:
621
Добавлен:
27.01.2020
Размер:
22.33 Mб
Скачать

biokhimija.ru

Тимин О.А. Лекции по биологической химии

321

 

 

 

В клетках РЭС гем в составе гемоглобина окисляется молекулярным кислородом. В реакциях последовательно происходит разрыв метинового мостика между 1-м и 2-м пиррольными кольцами гема с их восстановлением, отщеплением железа и белковой части и образованием оранжевого пигмента билирубина.

Билирубин – токсичное, жирорастворимое вещество, способное нарушать окислительное фосфорилирование в клетках. Особенно чувствительны к нему клетки нервной ткани.

Из клеток ретикуло-эндотелиальной системы билирубин попадает в кровь. Здесь он находится в комплексе с альбумином плазмы, в гораздо меньшем количестве – в комплексах с металлами, аминокислотами, пептидами и другими малыми молекулами. Образование таких комплексов не позволяет выделяться билирубину с мочой. Билирубин в комплексе с аль-

бумином называется свободный (неконъюгированный) или непрямой билирубин.

Из сосудистого русла в гепатоциты билирубин попадает с помощью белка-переносчика (лигандина). В клетке протекает реакция связывания билирубина с УДФ-глюкуроновой

Гемопротеины

322

 

 

кислотой (УДФГК), при этом образуются моно- и диглюкурониды. Кроме глюкуроновой кислоты, в реакцию могут вступать сульфаты, фосфаты, глюкозиды. Билирубин-глюкуронид получил название связанный (конъюгированный) или прямой билирубин.

После образования билирубин-глюкурониды АТФ-зависимым переносчиком секретируются в желчные протоки и далее в кишечник, где при участии бактериальной-глюкуронидазы превращаются в свободный билирубин.

Одновременно некоторое количество билирубин-глюкуронидов может попадать из желчи в кровь по межклеточным щелям.

Таким образом, в крови в норме одновременно существуют две формы билирубина: свободный, попадающий сюда из клеток РЭС (около 80% всего количества), и связанный, попадающий из желчных протоков (до 20%).

В кишечнике билирубин подвергается восстановлению под действием микрофлоры до мезобилирубина и мезобилиногена (уробилиногена). Часть последних всасывается и с током крови вновь попадает в печень, где окисляется до ди- и трипирролов. Другая часть достигает почек и попадает в мочу, придавая ей характерный цвет. Оставшиеся в кишечнике пигменты ферментами бактериальной флоры толстого кишечника восстанавливаются до стеркобилиногена и выделяются из организма, окрашивая кал. Незначительное количество стеркобилиногена через геморроидальные вены попадает в большой круг кровообращения, отсюда в почки и выделяется с мочой. На воздухе стеркобилиноген и уробилиноген превращаются, соответственно, в стеркобилин и уробилин.

Н АР У ШЕ Н И Я О Б М Е Н А Б И Л И Р У Б И НА

Накопление билирубина в крови свыше 43 мкмоль/л ведет к связыванию его эластическими волокнами кожи и конъюнктивы, что проявляется в виде желтухи.

ГЕМОЛИТИЧЕСКАЯ ЖЕЛТУХА

Гемолитическая или надпеченочная желтуха – ускоренное образование билирубина в результате усиления внутрисосудистого гемолиза. К данному типу желтух относятся гемолитические анемии различного происхождения: врожденный сфероцитоз, серповидноклеточная анемия, дефицит глюкозо-6-фосфатдегидрогеназы, отравление сульфаниламидами, талассемии, сепсис, лучевая болезнь, несовместимость крови. В данном случае гиперби-

лирубинемия развивается за счет фракции непрямого билирубина.

Гепатоциты усиленно переводят непрямой билирубин в связанную форму, секретируют его в желчь, в результате в кале увеличивается содержание стеркобилина, интенсивно его окрашивая. В моче возрастает содержание уробилина, билирубин отсутствует.

biokhimija.ru

Тимин О.А. Лекции по биологической химии

323

 

 

 

У новорожденных гемолитическая желтуха может развиться как симптом гемолитической болезни новорожденного.

МЕХАНИЧЕСКАЯ ЖЕЛТУХА

Механическая или подпеченочная желтуха развивается вследствие снижения оттока желчи при непроходимости желчного протока – желчные камни, новообразования поджелудочной железы, гельминтозы.

Врезультате застоя желчи происходит растяжение желчных капилляров, увеличивается проницаемость их стенок. Не имеющий оттока в кишечник прямой билирубин поступает в кровь, в результате развивается гипербилирубинемия. В тяжелых случаях, вследствие переполнения гепатоцитов прямым билирубином, реакция конъюгации с глюкуроновой кислотой может нарушаться. В результате в крови увеличивается концентрация непрямого билирубина.

Вмоче резко увеличен уровень билирубина (цвет темного пива) и снижено количество уробилина, практически отсутствует стеркобилин кала (серовато-белое окрашивание).

ПАРЕНХИМАТОЗНАЯ ЖЕЛТУХА

Паренхиматозная (печеночно-клеточная) желтуха – причиной может быть нарушение на всех трех стадиях превращения билирубина в печени: извлечение билирубина из крови печеночными клетками, его конъюгирование и секреция в желчь. Наблюдается при вирусных и других формах гепатитов, циррозе и опухолях печени, жировой дистрофии печени, при отравлении токсическими гепатотропными веществами, при врожденных патологиях.

Так как нарушаются все процессы превращения билирубина в печени, гипербилирубинемия развивается за счет обеих фракций, преимущественно прямого билирубина. Концентрация его возрастает из-за нарушения секреции в желчь и увеличения проницаемости мембран клеток печени. Количество непрямого билирубина возрастает за счет функциональной недостаточности гепатоцитов и/или снижения их количества.

В моче определяется билирубин (цвет крепкого черного чая), умеренно увеличена концентрация уробилина, уровень стеркобилина кала в норме или снижен.

У детей вариантами паренхиматозной желтухи являются физиологическая желтуха новорожденных и недоношенных, желтуха, вызываемая молоком матери. Наследственными формами паренхиматозной желтухи являются синдромы Жильбера-Мейленграхта, ДубинаДжонсона, Криглера-Найяра.

НАРУШЕНИЯ ОБМЕНА БИЛИ РУБИНА У ДЕТЕЙ

Гемолитическая болезнь новорожденного

Причины

Несовместимость крови матери и плода по группе или по резус-фактору. Накопление гидрофобной формы билирубина в подкожном жире обуславливает желтушность кожи. Однако реальную опасность представляет накопление билирубина в сером веществе нервной ткани и ядрах ствола с развитием "ядерной желтухи" (билирубиновая энцефалопатия).

Клиническая диагностика

Проявляется сонливостью, плохим сосанием, умственной отсталостью, ригидностью затылочных мышц, тоническими судорогами, тремором конечностей, изменением рефлексов с возможным развитием глухоты и параличей.

Лабораторная диагностика

В крови выявляются выраженная анемия, ретикулоцитоз, эритро- и нормобластоз. Гипербилирубинемия за счет непрямой фракции от 100 до 342 мкмоль/л, в дальнейшем присо-

Гемопротеины

324

 

 

единяется и прямая фракция. Уровень билирубина в крови быстро нарастает и к 3-5 дню жизни достигает максимума.

Основы лечения

Переливание крови, фенобарбитал, аскорбиновая кислота.

Физиологическая (транзиторная) желтуха новорожденных

Причины

o относительное снижение активности УДФ-глюкуронилтрансферазы в первые дни жизни, связанное с повышенным распадом фетального гемоглобина,

o абсолютное снижение активности УДФ-глюкуронилтрансферазы в первые дни жизни, o дефицит лигандина,

o слабая активность желчевыводящих путей.

Клиническая диагностика

o окрашивание кожи на 3-4 день после рождения, o гемолиза и анемии нет.

Исчезает спустя 1-2 недели после рождения.

Лабораторная диагностика

Увеличение концентрации свободного билирубина в сыворотке до 140-240 мкмоль/л.

Основы лечения

o фенобарбитал, который стимулирует в гепатоцитах увеличение активности УДФ-глюкуронилтрансферазы и цитохрома Р450,

o аскорбиновая кислота, глюкоза, o желчегонные средства.

Желтуха недоношенных

Причины

o относительное снижение активности УДФ-глюкуронилтрансферазы в первые дни жизни, связанное с повышенным распадом фетального гемоглобина,

o абсолютное снижение активности УДФ-глюкуронилтрансферазы в первые дни жизни, o дефицит лигандина,

o слабая активность желчевыводящих путей.

Клиническая диагностика o окрашивание кожи,

o гемолиза и анемии нет.

Исчезает спустя 3-4 недели после рождения.

Лабораторная диагностика

Увеличение концентрации свободного билирубина в сыворотке до максимума на 5-6 дни после рождения, более выражено по сравнению с физиологической желтухой.

Основы лечения

o фенобарбитал, который стимулирует в гепатоцитах увеличение активности УДФ-глюкуронилтрансферазы и цитохрома Р450,

o аскорбиновая кислота, глюкоза, o желчегонные средства,

o фототерапия – под влиянием света происходит образование "люмирубина" – изомерной формы билирубина, легко выводимой с мочой и желчью.

biokhimija.ru

Тимин О.А. Лекции по биологической химии

325

Негемолитическая гипербилирубинемия новорожденных, вызываемая молоком матери

Причины

Подавление активности УДФ-глюкуронилтрансферазы, предположительно, эстрогенами материнского молока.

Встречается у 1% вскармливаемых грудью новорожденных.

Клиническая диагностика

Проявляется желтухой, иногда с явлениями поражения ЦНС.

Лабораторная диагностика

Увеличение концентрации свободного билирубина в сыворотке.

Синдром Жильбера-Мейленграхта

Причины

К причинам заболевания относятся аутосомно-доминантное нарушение белка лигандина, ответственного за элиминацию билирубина из плазмы крови.

Клиническая диагностика

Выявляется в юношеском возрасте и продолжается в течение многих лет, обычно всю жизнь. Наблюдается у 2-5% населения, мужчины страдают чаще женщин (соотношение

10:1).

o иктеричность склер (от лат. icterus – желтый),

o желтушное окрашивание кожи (только у отдельных больных), особенно лица, иногда наблюдается частичное окрашивание ладоней, стоп, подмышечных областей, носогубного треугольника.

o диспепсические жалобы отмечаются в 50% случаев, выражаются в тошноте, отсутствии аппетита, отрыжке, нарушении стула (запор или понос), метеоризме.

Лабораторная диагностика

Периодическое повышение содержание свободного билирубина плазмы, вызванное с провоцирующими факторами.

Синдром Дубина-Джонсона

Причины

Аутосомно-доминантная недостаточность выведения конъюгированного билирубина из гепатоцитов в желчные протоки.

Клиническая диагностика

Болезнь протекает длительно, с периодическими обострениями. Встречается чаще у мужчин, выявляется в молодом возрасте, реже после рождения. Характерны повышенная утомляемость, плохой аппетит, боли в правом подреберье, поносы, желтуха, сопровождающаяся кожным зудом. Иногда встречается увеличенная печень и селезенка.

Лабораторная диагностика

Увеличение содержания свободного и конъюгированного билирубина в плазме. Характерны билирубинурия, понижение содержания уробилина в кале и моче.

Синдром Криглера-Найяра Тип I

Причины

Полное отсутствие активности УДФ-глюкуронилтрансферазы вследствие аутосомнорецессивного генетического дефекта.

Гемопротеины

326

 

 

Клиническая диагностика

Симптомы поражения нервной системы: повышение мышечного тонуса, нистагм, опистотонус, атетоз, тонические и клонические судороги. Дети отстают в психическом и физическом развитии. Развитие ядерной желтухи и гибель ребенка.

Лабораторная диагностика

Гипербилирубинемия появляется в первые дни (часы) после рождения. Характерна интенсивная желтуха, в большинстве случаев сопровождающаяся ядерной желтухой. Непрерывное возрастание содержания свободного билирубина в плазме до 200-800 мкмоль/л (в 15-50 раз выше нормы). Отсутствие конъюгированного билирубина в желчи.

Основы лечения

Ограничение физических и нервных нагрузок. Применяют фототерапию с использованием лампы дневного света, прямого солнечного света, внутривенно вливают растворы альбумина, производят заменные переливания крови.

Тип II

Причины

При синдроме Криглера-Найяра II типа отмечается аутосомно-рецессивный тип наследования. Генетически обусловленное снижение активности УДФ-глюкуронилтрансферазы.

Клиническая диагностика

Желтуха менее интенсивна.

Лабораторная диагностика

Содержание непрямого билирубина в крови в 5-20 раз выше нормы. В желчи есть билирубинглюкуронид.

Основы лечения

Ограничение физических и нервных нагрузок. Использование препаратов, индуцирующих глюкуронилтрансферазы – фенобарбитал, зиксорин.

КИСЛОТНО-ОСНОВНОЕ РАВНОВЕСИЕ

Кислотно-основное равновесие представляет собой активность физиологических и фи- зико-химических процессов, составляющих функционально единую систему стабилизации концентрации ионов Н+.

Основной количественной характеристикой кислотности водных растворов. является водородный показатель (рН) – отрицательный десятичный логарифм концентрации водородных ионов в растворе, т.е. зависимость pH и [H+] не линейная!

pH=-lg [H+]).

Установленный диапазон концентраций ионов Н+, совместимый с жизнью – 16-160 нмоль/л, что соответствует рН 6,8-7,8.

В среднем в плазме крови концентрация ионов водорода [Н+] = 40 нмоль/л, нормальный диапазон рН 7,35-7,45.

Роль систем гомеостаза организма – обеспечить неизменность концентрации ионов водорода при жизнедеятельности, что создает условия для:

o сохранения активности ферментативных и транспортных белков, o неспецифическая защита кожного эпителия;

o отрицательный заряд наружной поверхности мембраны эритроцитов,

oрастворимости неорганических и органических молекул (кальция и магния, щавелевой и мочевой кислот).

Водородный показатель является главным при оценке кислотно-основного состояния и его значение определяет диагноз ацидоза (снижение pH) или алкалоза (повышение pH).

ИС Т О Ч Н И К И И О Н О В В О Д О Р О Д А

1.В реакциях аэробного метаболизма глюкозы, аминокислот и жирных кислот посто-

янно образуются молекулы CO2. При участии фермента карбоангидразы он реагирует с водой и образует угольную кислоту, слабодиссоциирующую на ион Н+ и бикарбонат-ион

НСО3-.

СО2 + Н2О Н2СО3 НСО3- + Н+

Данный способ продукции протонов характерен почти для всех клеток и протекает при аэробном метаболизме, когда активно идут реакции окислительного декарбоксилирования пирувата и цикл трикарбоновых кислот.

2. Еще одним источником кислотных эквивалентов является анаэробный метаболизм глюкозы, при котором появляется молочная кислота.

Глюкоза Молочная кислота Лактат + Н+

Особенно ярко это проявляется при интенсивной мышечной работе. В клинической практике с накоплением молочной кислоты сталкиваются при недостаточном поступлении кислорода в клетки – при любых анемиях, шоке, тромбозах, сердечной и дыхательной недостаточности, повышении вязкости крови, обезвоживании. Также играет роль дефицит железа и меди в составе ферментов дыхательной цепи.

Кислотно-основное состояние

328

 

 

3. Метаболизм серосодержащих аминокислот приводит к появлению серной кислоты: Метионин Н24 42- + 2Н+

Цистеин Н24 42- + 2Н+

4. В определенных условиях (голодание, сахарный диабет 1 типа) в кровь поступают

ацетоуксусная и -гидроксимасляная кислоты:

Жирные кислоты Ацетил-SКоА Ацетоуксусная кислота Ацетоацетат + Н+ Жирные кислоты Ацетил-SКоА -Гидроксимасляная кислота -Гидроксибутират + Н+

5. При отравлениях органическими соединениями источником ионов Н+ могут служить щавелевая и муравьиная кислоты при метаболизме, соответственно, этиленгликоля и ме-

танола, салициловая кислота.

У Д А Л Е Н И Е И О Н О В В О Д О Р О Д А

Метаболическая активность организма сопровождается непрерывным потреблением кислорода, поступлением в среду ионов водорода и углекислого газа. Все это может повлиять на активность гормональных сигналов, ферментативных и транспортных систем клетки.

Для сохранения гомеостаза в организме необходимо наличие двух крупных систем: 1. Система химических реакций:

oдействие вне- и внутриклеточных буферных систем (бикарбонатная, фосфатная, белковая, гемоглобиновая),

o действие внеклеточных и внутриклеточных буферных систем,

o интенсивность внутриклеточного образования ионов Н+ и НСО3. 2. Система физиологических механизмов:

o легочная вентиляция и удаление СО2.

o почечная экскреция ионов Н+, реабсорбция и синтез НСО3 ,

o пассивное, т.е. нерегулируемое влияние оказывают печень и костная ткань.

СИСТЕМА ХИМИЧЕСКИХ РЕАКЦИЙ

Буферные системы – это соединения, противодействующие резким изменениям концентрации ионов Н+. Любая буферная система - это кислотно-основная пара: слабое основание (анион, А) и слабая кислота (Н-Анион, H-А). Они минимизируют сдвиги количества ионов Н+ за счет их связывания с анионом и включения в плохо диссоциирующее соединение – в слабую кислоту. Поэтому общее количество ионов Н+ изменяется не так заметно, как это могло бы быть.

Существует несколько буферных систем жидкостей организма –

бикарбонатная, фосфатная, белковая, гемоглобиновая. Они вступают в действие момен-

тально и через несколько минут их эффект достигает максимума возможного.

Фосфатная буферная система

Фосфатная буферная система составляет около 2% от всей буферной емкости крови и до 50% буферной емкости мочи. Она образована гидрофосфатом (HPO42–) и дигидрофосфатом (H2PO4). Первое соединение слабо диссоциирует и ведет себя как слабая кислота, второе обладает щелочными свойствами. В норме отношение HРO42– к H2РO4равно 4/1.

При взаимодействии кислот (ионов Н+) с двузамещенным фосфатом (HPO42-) образуется дигидрофосфат (H2PO4):

biokhimija.ru

Тимин О.А. Лекции по биологической химии

329

 

 

 

В результате концентрация ионов Н+ понижается.

При поступлении в кровь оснований (избыток ОН-групп) они нейтрализуются поступающими в плазму от H2PO4ионами Н+:

Роль фосфатного буфера особенно высока во внутриклеточном пространстве и в просвете почечных канальцев.

Белковая буферная система

Белки плазмы, в первую очередь альбумин, играют роль буфера благодаря своим амфотерным свойствам. Их вклад в буферизацию плазмы крови около 5%.

В кислой среде подавляется диссоциация СООН-групп аминокислотных радикалов (в аспарагиновой и глутаминовой кислот), группы NH2 (в аргинине и лизине) связывают избыток Н+. При этом белок заряжается положительно.

В щелочной среде усиливается диссоциация COOH-групп, поступающие в плазму ионы Н+ связывают избыток ОН-ионов и pH сохраняется. Белки в данном случае выступают как кислоты и заряжаются отрицательно.

Бикарбонатная буферная система

Эта система самая мощная, на ее долю приходится 65% всей буферной системы. Она состоит из бикарбонат-иона (НСО3) и угольной кислоты (Н2СО3). В норме отношение HCO3

к H2CO3 равно 20/1.

При поступлении в кровь ионов H+ (т.е. кислоты) ионы бикарбоната натрия взаимодействуют с ней и образуется угольная кислота:

Кислотно-основное состояние

330

 

 

При работе бикарбонатной системы концентрация водородных ионов понижается, т.к. угольная кислота является очень слабой кислотой и плохо диссоциирует.

Если в кровь поступают вещества с щелочными свойствами, то они реагируют с угольной кислотой и образуют ионы бикарбоната:

Работа бикарбонатного буфера неразрывно связана с дыхательной системой.

Гемоглобиновая буферная система

Высокой мощностью в крови обладает гемоглобиновый буфер, на него приходится до 28% всей буферной емкости крови. В качестве кислой части буфера выступает оксигенированный гемоглобин H-HbO2. Он имеет выраженные кислотные свойства и в 80 раз легче отдает ионы водорода, чем восстановленный Н-Нb, выступающий как основание. Гемоглобиновый буфер можно рассматривать как часть белкового, но его особенностью являет-

ся работа в тесном контакте с бикарбонатной системой.

Изменение кислотности гемоглобина происходит в тканях и в легких и вызывается связыванием соответственно H+ или О2. Непосредственный механизм заключается в присоединении или отдаче иона H+ остатком гистидина в глобиновой части молекулы (см эффект Бора).

В тканях более кислый pH является результатом накопления минеральных (угольной, серной, соляной) и органических кислот (молочной). Ионы H+ присоединяются к пришедшему оксигемоглобину (HbО2) и превращают его в H-HbО2. Это моментально вызывает отдачу оксигемоглобином кислорода (см эффект Бора) и он превращается в восстановленный H-Hb.

НbO2+ Н+ → [H-HbO2] → Н-Hb + O2

Врезультате снижается количество Н2СО3, продуцируются ионы НСО3- и тканевое пространство подщелачивается.

Влегких после удаления СО2 (угольной кислоты) происходит защелачивание крови.

При этом присоединение О2 к дезоксигемоглобину H-Hb образует кислоту ННbО2 более сильную, чем угольная. Она отдает свои ионы Н+ в среду, предотвращая повышение рН:

Н-Hb + O2 → [H-HbO2] → НbO2 + Н+

Работу гемоглобинового буфера обычно рассматривают в связи с бикарбонатныым буфером:

Работа гемоглобинового буфера напрямую зависит от активности дыхательной системы.