- •Вопрос 2
- •Вопрос 3
- •Вопрос 1
- •Вопрос 2
- •Вопрос 3
- •Вопрос 1
- •Бескислородное окисление, или гликолиз
- •Вопрос 2
- •Вопрос 3
- •Симптомы течения заболевания
- •Вопрос 1
- •Вопрос 2
- •Вопрос 3
- •Наиболее значимые и опасные возбудители болезней
- •2)Риккетсии:
- •3)Вирусы:
- •Вопрос 1
- •Главное отличие
- •Дополнительные отличия
- •Вопрос 2
- •Вопрос 3
- •Диагностика
- •Профилактика
- •Вопрос 1
- •Вопрос 2
- •Прямая репарация
- •Эксцизионная репарация
- •Пострепликативная репарация
- •Вопрос 3
- •Вопрос 1
- •Вопрос 3
- •Вопрос 1
- •Вопрос 2
- •Вопрос 3
- •Вопрос 1
- •Подготовительный этап
- •Вопрос 2
- •Вопрос 3
- •Вопрос 1
- •Вопрос 2
- •Комбинативная изменчивость
- •Вопрос 3
- •Вопрос 1
- •Вопрос 2
- •Вопрос 3
- •Вопрос 1
- •Вопрос 2
- •Вопрос 3
- •Причины возникновения эхинококкоза
- •Признаки и симптомы эхинококкоза
- •Диагностика эхинококкоза
- •Лечение и профилактика эхинококкоза
- •Вопрос 1
- •Вопрос 2
- •Вопрос 3
- •Вопрос 2
- •Углеводы
- •Нуклеиновые кислоты
- •Вопрос 2
- •Вопрос 3
- •Симптомы Цистицеркоза.
- •Диагностика Цистицеркоза.
- •Лечение Цистицеркоза (Свиного цепня).
- •Вопрос 1
- •Вопрос 2
- •Вопрос 3
- •Причины болезни
- •Диагностика лямблиоза
- •Лечение лямблиоза
- •Профилактика лямблиоза
- •Вопрос 1
- •Вопрос 2
- •Вопрос 3
- •Вопрос 1
- •Вопрос 2
- •Вопрос 3
- •Вопрос 1
- •Вопрос 2
- •Вопрос 3
- •Вопрос 1
- •Биосинтез белка (реализация наследственной информации)
- •Вопрос 2
- •Вопрос 3
- •Вопрос1
- •Вопрос 2
- •Вопрос 3
- •Генобиоз и голобиоз
- •Мир рнк как предшественник современной жизни
- •Вопрос 1
- •Способы бесполого размножения
- •2) Спорообразование
- •Вопрос 2
- •Вопрос 3
- •Вопрос 1
- •Аминокислоты и белки
- •Углеводы [править]
- •Нуклеотиды
- •Вопрос 2
- •Вопрос 3
- •Свойства популяций
- •Вопрос 1
- •Вопрос 2
- •Вопрос 3
- •Вопрос 1
- •Вопрос 2
- •Вопрос 3
- •Вопрос 1
- •Вопрос 2
- •Вопрос 3
- •Вопрос 1
- •Вопрос 2
- •Вопрос 3
- •Вопрос 1
- •Уровни организации живой материи
- •Вопрос 2
- •Определение
- •Объяснение
- •Вопрос 2
- •Вопрос 1
- •1) Профаза
- •4) Телофаза
- •Вопрос 2
- •Вопрос 3
- •Лечение
Вопрос 3
РОЛЬ ОТДЕЛЬНЫХ ФОКТОРОВ В ПРОЦЕССЕ ЭВОЛЮЦИИ
____
Билет 26
Вопрос 1
ОБРАЗОВАНИЕ, СТРОЕНИЕ И БИОЛОГИЧЕСКАЯ РОЛЬ АТФ- АДЕНОЗИНТРИФОСФОРНОЙ КИСЛОТЫ
Главная роль АТФ в организме связана с обеспечением энергией многочисленных биохимических реакций. Являясь носителем двух высокоэнергетических связей, АТФ служит непосредственным источником энергии для множества энергозатратных биохимических и физиологических процессов. Всё это реакции синтеза сложных веществ в организме: осуществление активного переноса молекул через биологические мембраны, в том числе и для создания трансмембранного электрического потенциала; осуществления мышечного сокращения.
Помимо энергетической АТФ выполняет в организме ещё ряд других не менее важных функций:
Вместе с другими нуклеозидтрифосфатами АТФ является исходным продуктом при синтезе нуклеиновых кислот.
Кроме того, АТФ отводится важное место в регуляции множества биохимических процессов. Являясь аллостерическим эффектором ряда ферментов, АТФ, присоединяясь к их регуляторным центрам, усиливает или подавляет их активность.
АТФ является также непосредственным предшественником синтеза циклического аденозинмонофосфата — вторичного посредника передачи в клетку гормонального сигнала.
Также известна роль АТФ в качестве медиатора в синапсах.
В организме АТФ синтезируется путём фосфорилирования АДФ:
АДФ + H3PO4 + энергия → АТФ + H2O.
Фосфорилирование АДФ возможно двумя способами: субстратное фосфорилирование и окислительное фосфорилирование (используя энергию окисляющихся веществ). Основная масса АТФ образуется на мембранах митохондрий в ходе окислительного фосфорилирования H-зависимой АТФ-синтазой. Субстратное фосфорилирование АТФ не требует участия мембранных ферментов, оно происходит в процессе гликолиза или путём переноса фосфатной группы с других макроэргических соединений.
Реакции фосфорилирования АДФ и последующего использования АТФ в качестве источника энергии образуют циклический процесс, составляющий суть энергетического обмена.
В организме АТФ является одним из самых часто обновляемых веществ, так у человека продолжительность жизни одной молекулы АТФ менее 1 мин. В течение суток одна молекула АТФ проходит в среднем 2000—3000 циклов ресинтеза (человеческий организм синтезирует около 40 кг АТФ в день), то есть запаса АТФ в организме практически не создаётся, и для нормальной жизнедеятельности необходимо постоянно синтезировать новые молекулы АТФ.
Вопрос 2
НАСЛЕДСТВЕННАЯ ИЗМЕНЧИВОСТЬ
См. билет №2, вопрос 2
Вопрос 3
ДОКАЗАТЕЛЬСТВА ЭВОЛЮЦИИ
Доказа́тельства эволю́ции — научные данные и концепции, подтверждающие происхождение всех живых существ на Земле от общего предка. Благодаря этим доказательствам основы эволюционного учения получили признание в научном сообществе, а ведущей системой представлений о процессах видообразования стала синтетическая теория эволюции.
Эволюционные процессы наблюдаются как в естественных, так и лабораторных условиях. Известны случаи образования новых видов. Описаны также случаи развития новых свойств посредством случайных мутаций. Факт эволюции на внутривидовом уровне доказан экспериментально, а процессы видообразования непосредственно наблюдались в природе.
Чтобы получить сведения об эволюционной истории жизни, палеонтологи анализируют ископаемые останки организмов. Степень родства между современными видами можно установить, сравнивая их строение, геномы, развитие эмбрионов (эмбриогенез). Дополнительный источник информации об эволюции — закономерности географического распространения животных и растений, которые изучает биогеография. Все эти данные укладываются в единую картину — эволюционное дерево жизни.
Наблюдаемые сегодня изменения в популяциях доказывают не только существование эволюции, но и существование ряда механизмов, необходимых для эволюционного происхождения всех видов от общего предка. Было установлено, что геномы подвержены разнообразным мутациям, среди которых перемещение интронов, дупликация генов, рекомбинации, транспозиции, ретровирусные вставки (горизонтальный перенос генов), замена, удаление и вставка отдельных нуклеотидов, а также хромосомные перестройки. Известны такие хромосомные перестройки как дупликация генома (полиплоидия), неравный кроссинговер, хромосомная инверсия, транслокация, деление, слияние, дупликация и удаление хромосом. Также наблюдается изменениестроения организмов и функциональные изменения — различные адаптации, появление способности усваивать новый вид пищи (в том числе — нейлон и пентахлорфенол, производство которых началось в 1930-х годах) и т. д. Кроме того, были обнаружены всевозможные промежуточные этапы возникновения новых видов, что свидетельствует о плавном характере видообразования.
Билет 27
