
- •Вопрос 1. Дискретная матричная модель воспроизводства населения.
- •Вопрос 2. Критерий выбора оптимальной стратегии в условиях полной неопределенности (игры с природой)
- •Вопрос 3.Метод имитационного моделирования (мим) применительно к задачам систем управления запасами.
- •Вопрос 4. Потребительские изокванты и их свойства. Задача потребительского выбора и ее графическая интерпретация. Норма замены благ
- •Вопрос 5. Понятие m-продуктовой n-факторной производственной системы. Линейная оптимизационная модель Канторовича и её применение при анализе затраты - выпуск
- •Вопрос 6. Нелинейные модели потребления. Потребительский спрос. Эластичность спроса и предложения. Спрос как функция цены.
- •Вопрос 7. Экономическое содержание двойственности. Способы получения и практическое использование оценок ресурсов и их св-ва: оценка как мера влияния на функционал.
- •1. Оценка – мера дефицитности ресурсов и продукции.
- •2. Оценка – мера влияния ограничения на функционал модели.
- •3.Оценка – средство определения эффективности технологических способов производства.
- •4.Оценка – средство балансировки затрат и результатов.
- •Вопрос 8. Производственная функция предприятия. Способы моделирования. Практическое значение в задачах анализа и прогнозирования рыночной деятельности предприятия.
- •Вопрос 9. Экономический рост. Модель р.Солоу.
- •Вопрос 10. Предельная эффективность и нормы замещения факторов (благ) в моделях производства и потребления. Связь предельных характеристик факторов (благ) с их рыночной стоимостью
- •Модель производства (min издержек)
- •Модель потребления (max полезности)
- •Вопрос 11. Методы многоуровневой оптимизации. Центральная задача в методе Корнаи-Липтака. Экономическое содержание двойственных оценок в этой задаче.
- •I предприятие II предприятие
- •Вопрос 12. Индекс Гиттинса последовательности доходов: стохастическая модель со случайными доходами. Экономическая интерпретация.
- •Вопрос 13.Модель компенсированного бюджета. Предпосылки построения. Общий вид модели. Функция Лагранжа. Экономическое содержание множителей Лагранжа.
- •Вопрос 14. Структурные уравнения модели л.Клейна.
- •Вопрос 15. Методы оценки параметров в регрессионных моделях и критерии проверки их качества.
- •Метод наименьших квадратов (мнк)
- •Метод максимального правдоподобия
- •Вопрос 16. Эконометрические модели с нестандартными ошибками
- •Обобщенный метод наименьших квадратов
- •Обобщенный метод максимального правдоподобия
- •Метод инструментальных переменных
- •Вопрос 17. Аналитическое решение и графическое представление игры 2x2. Возможности и перспективы применения теории игр при решении соц-экон задач.
- •Вопрос 18. Траектория равновесного роста. Траектория Дж. Фон Неймана.
- •Модель Солоу.
- •Траектория Неймана.
- •Вопрос 19. Модель экономического равновесия. Предпосылки построения. Функция избыточного спроса и ее использование в модели л. Вальраса.
- •Имеется f фирм
- •Имеется r потребителей
- •Вопрос 20. Методы снижения размерности многомерного признакового пространства
- •Вопрос 21. Динамическая модель в. Леонтьева как система линейных дифференциальных уравнений.
- •Вопрос 22. Метод потенциалов для решения стандартной транспортной задачи.
- •Вопрос 23. Модели межрегиональной миграции. Гравитационные модели миграции. Факторы, учитываемые в этих моделях. Понятия и показатели притягательности регионов.
- •Факторные модели оценки показателей миграции
- •Гравитационные модели миграции
- •Вопрос 24. Методы стохастической многокритериальной оптимизации
- •Оптимизация основного частного критерия
- •Методы компенсации
- •Методы порогов сравнимости
- •Вопрос 25. Модель факторного анализа, критерии качества структуры модели. Использование результатов факторного анализа в регрессионных моделях
- •Для определения коэффициентов модели фа
- •Определение факторных нагрузок:
- •Вычисление факторного отображения;
- •Вращение факторного пространства
- •Вопрос 26. Формулировка задачи Больца. Принцип максимума как распространение метода множителей Лагранжа на решение задачи Больца.
- •Вопрос 27. Основные понятия теории линейного программирования. Теоретические основы симплекс-метода.
- •Вопрос 28. Статическая межотраслевая модель в. Леонтьева. Основные соотношения.
- •Сумма элементов матрицы a по любому из столбцов меньше единицы, то есть (т.К. И )
- •Вопрос 29. Робастное статистическое оценивание
- •Выявление грубых ошибок.
- •2.Дисперсионный критерий Граббса
- •4. Обобщенный e-критерий Титьена-Мура.
- •Устойчивое оценивание
- •Метод Хубера.
- •Критерий Хоттелинга
- •Вопрос 30. Основные понятия системного анализа. Свойств систем. Особенности сложных систем. Классификация методов моделирования. Иерархия моделей. Методы формализоанногопредсавления систем.
- •Основные понятия.
- •Свойства системы
- •Понятие сложной системы
- •Методы моделирования.
- •Иерархия моделей (проблема принятия решений)
- •Вопрос 31. Постановка классической задачи вариационного исчисления (задача Лагранжа)
- •Вопрос 32. Прямые методы оптимизации решений при многих критериях.
- •Оптимизация основного частного критерия
- •Методы компенсации
- •Методы порогов сравнимости
Вопрос 32. Прямые методы оптимизации решений при многих критериях.
Метод аналитической иерархии. Общая схема МАИ. Постановка задачи:
1.Задана общая цель (n), назначена соответствующая система, которая должна оптимизироваться.
2. Задано произвольное число альтернатив, из которых нужно выбрать лучшее
3. Задано произвольное число частных критериев, по которым анализируются эти альтернативы.
Требуется найти наилучшую альтернативу. Атрибуты:
Н а первом шаге задача оптимизации структурируется в виде соответствующей иерархии ( цели, критерии и альтернативы).
Реализация попарных сравнений для элементов каждого уровня с учетом специфики требований элементов более высокого уровня иерархии. При этом результаты попарных сравнений реализуются в виде матрицы, по которым затем определяется веса важности этих элементов
Определяются количественные индикаторы альтернативы, называемые приоритетами.
Шкала сравнений: 1.Эквивалентны (1) 2.Умеренное превосходство (3-1) 3.Существенное превосходство (5-1) 4.….(7-1) 5.….(9-1)
Матрица сравнений сравнивает каждый элемент с каждым:
|
А |
Б |
С |
Д |
сумма |
Нормируем |
Итог |
А |
1 |
2 |
3 |
6 |
12 |
1/2 |
1*1/2+2*1/4+3*1/6+6*1/12=2 |
Б |
1/2 |
1 |
3/2 |
3 |
12/2 |
1/4 |
1 |
С |
1/3 |
2/3 |
1 |
2 |
12/3 |
1/6 |
4/6 |
Д |
1/6 |
1/3 |
1/2 |
1 |
12/6 |
1/12 |
4/12 |
сумма |
|
|
|
|
24 |
1 |
|
Свойства матрицы:
aii=1, для любых i
aij=1/aji =>aij*1/aji=1 – обратно симметричная матрица
aik*akj=aij
vi/vk*vk/vj=vi/vj – согласованная матрица
Оптимизация основного частного критерия
Среди частных критериев выделяется один, принимается как основной. Для остальных указываются приемлемые значения.
при ограничениях
где — задаваемые допустимые значения для каждого критерия.
Метод взвешенной суммы оценок частных критериев
Формулируется скалярный критерий как взвешенная сумма оценок частных критериев:
— вес k-го критерия, задаваемый экспертами или непосредственно ЛПР с учетом особенностей исходной рассматриваемой задачи.
Минимаксный обобщённый критерий
На основе частных критериев исходной многокритериальной задачи формируется обобщенный критерий следующим образом: где — коэффициент важности каждого критерия (достаточно часто на практике в качестве коэффициента выбирают значение (gk это приемлемое значение критерия)). Точки минимума этой критериальной функции - искомое оптимальное решение.
Минимизация обобщённого скалярного критерия
Формируется скалярный обобщенный критерий
где — минимальное значение каждого частного критерия на допустимой области X.
Метод последовательных уступок
В случае, когда частные критерии могут быть упорядочены в порядке убывающей важности. Пусть — наиболее важный, — наименее.
1) решается однокритериальная задача для наиболее важного критерия:
Пусть — минимальное значение, полученное на первом этапе. Назначается некоторая уступка ∆1 (∆1> 0), которую можно допустить в рамках реализации этого метода с учетом особенностей критерия по отношению к найденному значению , чтобы перейти ко второму этапу. На критерий налагается требование, согласно которому его оценка не должна превышать допустимой величины .
2) ищем решение, минимизирующееg(2)(x) при указанном ограничении на при указанном ограничении на и с учетом заданного множества X допустимых решений, т.е. решаем следующую однокритериальную задачу:
при ограничениях
И ТД.
Метод может приводить к решениям, не принадлежащим переговорному множеству решений, оптимальных по Парето. Другими словами, найденное решение может не быть эффективным.
Метод идеальной точки
Состоит в нахождении точки, дающей решение, ближайшее к так называемой утопической точке, которую, обычно, задает ЛПР, в виде желаемых значений показателей всех частных критериев. Найденную точку с указанным свойством и принимают в качестве наилучшего решения по методу идеальной точки. Пусть Пусть — наилучшие значения этих критериев в .
Тогда в пространстве точку с координатами называют утопической точкой — УТ. Ближайшую (по метрике) к УТ точку, которую можно реализовать при заданных ограничениях , называют идеальной точкой. Метод идеальной точки может приводить к решениям, не принадлежащим границе Парето.