
- •Вопрос 1. Дискретная матричная модель воспроизводства населения.
- •Вопрос 2. Критерий выбора оптимальной стратегии в условиях полной неопределенности (игры с природой)
- •Вопрос 3.Метод имитационного моделирования (мим) применительно к задачам систем управления запасами.
- •Вопрос 4. Потребительские изокванты и их свойства. Задача потребительского выбора и ее графическая интерпретация. Норма замены благ
- •Вопрос 5. Понятие m-продуктовой n-факторной производственной системы. Линейная оптимизационная модель Канторовича и её применение при анализе затраты - выпуск
- •Вопрос 6. Нелинейные модели потребления. Потребительский спрос. Эластичность спроса и предложения. Спрос как функция цены.
- •Вопрос 7. Экономическое содержание двойственности. Способы получения и практическое использование оценок ресурсов и их св-ва: оценка как мера влияния на функционал.
- •1. Оценка – мера дефицитности ресурсов и продукции.
- •2. Оценка – мера влияния ограничения на функционал модели.
- •3.Оценка – средство определения эффективности технологических способов производства.
- •4.Оценка – средство балансировки затрат и результатов.
- •Вопрос 8. Производственная функция предприятия. Способы моделирования. Практическое значение в задачах анализа и прогнозирования рыночной деятельности предприятия.
- •Вопрос 9. Экономический рост. Модель р.Солоу.
- •Вопрос 10. Предельная эффективность и нормы замещения факторов (благ) в моделях производства и потребления. Связь предельных характеристик факторов (благ) с их рыночной стоимостью
- •Модель производства (min издержек)
- •Модель потребления (max полезности)
- •Вопрос 11. Методы многоуровневой оптимизации. Центральная задача в методе Корнаи-Липтака. Экономическое содержание двойственных оценок в этой задаче.
- •I предприятие II предприятие
- •Вопрос 12. Индекс Гиттинса последовательности доходов: стохастическая модель со случайными доходами. Экономическая интерпретация.
- •Вопрос 13.Модель компенсированного бюджета. Предпосылки построения. Общий вид модели. Функция Лагранжа. Экономическое содержание множителей Лагранжа.
- •Вопрос 14. Структурные уравнения модели л.Клейна.
- •Вопрос 15. Методы оценки параметров в регрессионных моделях и критерии проверки их качества.
- •Метод наименьших квадратов (мнк)
- •Метод максимального правдоподобия
- •Вопрос 16. Эконометрические модели с нестандартными ошибками
- •Обобщенный метод наименьших квадратов
- •Обобщенный метод максимального правдоподобия
- •Метод инструментальных переменных
- •Вопрос 17. Аналитическое решение и графическое представление игры 2x2. Возможности и перспективы применения теории игр при решении соц-экон задач.
- •Вопрос 18. Траектория равновесного роста. Траектория Дж. Фон Неймана.
- •Модель Солоу.
- •Траектория Неймана.
- •Вопрос 19. Модель экономического равновесия. Предпосылки построения. Функция избыточного спроса и ее использование в модели л. Вальраса.
- •Имеется f фирм
- •Имеется r потребителей
- •Вопрос 20. Методы снижения размерности многомерного признакового пространства
- •Вопрос 21. Динамическая модель в. Леонтьева как система линейных дифференциальных уравнений.
- •Вопрос 22. Метод потенциалов для решения стандартной транспортной задачи.
- •Вопрос 23. Модели межрегиональной миграции. Гравитационные модели миграции. Факторы, учитываемые в этих моделях. Понятия и показатели притягательности регионов.
- •Факторные модели оценки показателей миграции
- •Гравитационные модели миграции
- •Вопрос 24. Методы стохастической многокритериальной оптимизации
- •Оптимизация основного частного критерия
- •Методы компенсации
- •Методы порогов сравнимости
- •Вопрос 25. Модель факторного анализа, критерии качества структуры модели. Использование результатов факторного анализа в регрессионных моделях
- •Для определения коэффициентов модели фа
- •Определение факторных нагрузок:
- •Вычисление факторного отображения;
- •Вращение факторного пространства
- •Вопрос 26. Формулировка задачи Больца. Принцип максимума как распространение метода множителей Лагранжа на решение задачи Больца.
- •Вопрос 27. Основные понятия теории линейного программирования. Теоретические основы симплекс-метода.
- •Вопрос 28. Статическая межотраслевая модель в. Леонтьева. Основные соотношения.
- •Сумма элементов матрицы a по любому из столбцов меньше единицы, то есть (т.К. И )
- •Вопрос 29. Робастное статистическое оценивание
- •Выявление грубых ошибок.
- •2.Дисперсионный критерий Граббса
- •4. Обобщенный e-критерий Титьена-Мура.
- •Устойчивое оценивание
- •Метод Хубера.
- •Критерий Хоттелинга
- •Вопрос 30. Основные понятия системного анализа. Свойств систем. Особенности сложных систем. Классификация методов моделирования. Иерархия моделей. Методы формализоанногопредсавления систем.
- •Основные понятия.
- •Свойства системы
- •Понятие сложной системы
- •Методы моделирования.
- •Иерархия моделей (проблема принятия решений)
- •Вопрос 31. Постановка классической задачи вариационного исчисления (задача Лагранжа)
- •Вопрос 32. Прямые методы оптимизации решений при многих критериях.
- •Оптимизация основного частного критерия
- •Методы компенсации
- •Методы порогов сравнимости
Методы моделирования.
Качественные
-мозговой штурм;
-сценарный;
-Дельфи;
-морфологический (находить все мыслимые варианты решения проблемы путём комбинирования выделенных элементов или их признаков);
-дерево целей.
Количественные (формализованного представления)
-аналитические;
-статистические;
-теор-множественные;
-логические;
-графические;
-дерево решений;
Иерархия моделей (проблема принятия решений)
В идеальном случае для принятия решения необходимо получить выражение, связывающее цель системы со средствами её достижения. Это выражение представляет собой закон, позволяющий оценить эффективность пути движения к цели.
Если такой закон известен, то он прописывается в аналитической модели. В такой ситуации говорят, что задача разрешима.
Если закон неизвестен, то стараются установить корреляционную зависимость между критерием и ключевыми факторами функционирования системы. Это осуществляется в рамках эконометрической модели.
Если и это не удаётся, то разрабатывается теория, которая содержит утверждения и правила, позволяющие сформулировать концепцию, то есть построить концептуальную модель, и на этой основе сконструировать механизм принятия решений (пример – электрон (частица/волна)).
Если и это не удаётся, то выдвигается гипотеза, и на её основе создаётся имитационная модель, с помощью которой исследуются возможные варианты решений.
Вопрос 31. Постановка классической задачи вариационного исчисления (задача Лагранжа)
Классическая задача ВИ: среди множества функций времени – фазовых траекторий, соединяющих две фиксированные точки, соответствующие начальному и конечному моментам времени, требуется выбрать функцию, максимизирующую некоторый интеграл от заданной функции, которая зависит от фазовой координаты и времени.
Рассмотрим
функционал
V[y]=
,
Где
- дважды непрерывно дифференцируемая
функция.
Граничные точки допустимых кривых закреплены: y (а) = А, у(b) = В.
Задача: среди всех функций у(x), имеющих непрерывную производную у(х)𝝐 С1 [а,b] и удовлетворяющих условиям, найти ту, которая доставляет экстремум функционалу. Эту задачу называют также задачей с закрепленными границами. Любую траекторию у(х) называют допустимой, если она удовлетворяет граничным условиям и: y(x) – непрерывная, а y’ (x) – кусочно-непрерывная.
Пусть
кривая у
=
(х),
реализующая
экстремум функционала, имеет вторую
непрерывную производную, т.е. у(х)𝝐
С2[а,b].
Для
того, чтобы функционал, определенный
на множестве кривых у(х)𝝐С2[а,
b],
удовлетворяющих граничным условиям,
достигал экстремума на кривой
(х)𝝐С2[а,
b],
необходимо, чтобы эта кривая удовлетворяла
условиям:
уравнению Эйлера: аналогия обращения в ноль производной
обозн
– первая
произв. по y
- 1япроизв-я
по y’
Fy’y' - 2япроизв-я по y’
его решения –
«экстремали».
Уравнение Эйлера полностью: y" Fy’y' + у' Fyy' + Fxy' — Fy= 0.
Задача может иметь единственное решение, может иметь множество, может не иметь ни одного.
УсловиюЛежандра: необх. усл-е 2 го порядка
Решение у(х) должно удовлусл-ю Fy’y'<=0
УсловиюВейерштрасса: аналогия усл-ю вогнутости целев ф-ции
Пусть z(x) – любое другое допуст решение.
Тогда
E(
где
E(
УсловиюВейерштрасса-Эрдмананет аналогийтк завис от времени
Для точки излома допустимой траектории
и
(F-
непрерывны
в точках излома y’(t)