
- •Вопрос 1. Дискретная матричная модель воспроизводства населения.
- •Вопрос 2. Критерий выбора оптимальной стратегии в условиях полной неопределенности (игры с природой)
- •Вопрос 3.Метод имитационного моделирования (мим) применительно к задачам систем управления запасами.
- •Вопрос 4. Потребительские изокванты и их свойства. Задача потребительского выбора и ее графическая интерпретация. Норма замены благ
- •Вопрос 5. Понятие m-продуктовой n-факторной производственной системы. Линейная оптимизационная модель Канторовича и её применение при анализе затраты - выпуск
- •Вопрос 6. Нелинейные модели потребления. Потребительский спрос. Эластичность спроса и предложения. Спрос как функция цены.
- •Вопрос 7. Экономическое содержание двойственности. Способы получения и практическое использование оценок ресурсов и их св-ва: оценка как мера влияния на функционал.
- •1. Оценка – мера дефицитности ресурсов и продукции.
- •2. Оценка – мера влияния ограничения на функционал модели.
- •3.Оценка – средство определения эффективности технологических способов производства.
- •4.Оценка – средство балансировки затрат и результатов.
- •Вопрос 8. Производственная функция предприятия. Способы моделирования. Практическое значение в задачах анализа и прогнозирования рыночной деятельности предприятия.
- •Вопрос 9. Экономический рост. Модель р.Солоу.
- •Вопрос 10. Предельная эффективность и нормы замещения факторов (благ) в моделях производства и потребления. Связь предельных характеристик факторов (благ) с их рыночной стоимостью
- •Модель производства (min издержек)
- •Модель потребления (max полезности)
- •Вопрос 11. Методы многоуровневой оптимизации. Центральная задача в методе Корнаи-Липтака. Экономическое содержание двойственных оценок в этой задаче.
- •I предприятие II предприятие
- •Вопрос 12. Индекс Гиттинса последовательности доходов: стохастическая модель со случайными доходами. Экономическая интерпретация.
- •Вопрос 13.Модель компенсированного бюджета. Предпосылки построения. Общий вид модели. Функция Лагранжа. Экономическое содержание множителей Лагранжа.
- •Вопрос 14. Структурные уравнения модели л.Клейна.
- •Вопрос 15. Методы оценки параметров в регрессионных моделях и критерии проверки их качества.
- •Метод наименьших квадратов (мнк)
- •Метод максимального правдоподобия
- •Вопрос 16. Эконометрические модели с нестандартными ошибками
- •Обобщенный метод наименьших квадратов
- •Обобщенный метод максимального правдоподобия
- •Метод инструментальных переменных
- •Вопрос 17. Аналитическое решение и графическое представление игры 2x2. Возможности и перспективы применения теории игр при решении соц-экон задач.
- •Вопрос 18. Траектория равновесного роста. Траектория Дж. Фон Неймана.
- •Модель Солоу.
- •Траектория Неймана.
- •Вопрос 19. Модель экономического равновесия. Предпосылки построения. Функция избыточного спроса и ее использование в модели л. Вальраса.
- •Имеется f фирм
- •Имеется r потребителей
- •Вопрос 20. Методы снижения размерности многомерного признакового пространства
- •Вопрос 21. Динамическая модель в. Леонтьева как система линейных дифференциальных уравнений.
- •Вопрос 22. Метод потенциалов для решения стандартной транспортной задачи.
- •Вопрос 23. Модели межрегиональной миграции. Гравитационные модели миграции. Факторы, учитываемые в этих моделях. Понятия и показатели притягательности регионов.
- •Факторные модели оценки показателей миграции
- •Гравитационные модели миграции
- •Вопрос 24. Методы стохастической многокритериальной оптимизации
- •Оптимизация основного частного критерия
- •Методы компенсации
- •Методы порогов сравнимости
- •Вопрос 25. Модель факторного анализа, критерии качества структуры модели. Использование результатов факторного анализа в регрессионных моделях
- •Для определения коэффициентов модели фа
- •Определение факторных нагрузок:
- •Вычисление факторного отображения;
- •Вращение факторного пространства
- •Вопрос 26. Формулировка задачи Больца. Принцип максимума как распространение метода множителей Лагранжа на решение задачи Больца.
- •Вопрос 27. Основные понятия теории линейного программирования. Теоретические основы симплекс-метода.
- •Вопрос 28. Статическая межотраслевая модель в. Леонтьева. Основные соотношения.
- •Сумма элементов матрицы a по любому из столбцов меньше единицы, то есть (т.К. И )
- •Вопрос 29. Робастное статистическое оценивание
- •Выявление грубых ошибок.
- •2.Дисперсионный критерий Граббса
- •4. Обобщенный e-критерий Титьена-Мура.
- •Устойчивое оценивание
- •Метод Хубера.
- •Критерий Хоттелинга
- •Вопрос 30. Основные понятия системного анализа. Свойств систем. Особенности сложных систем. Классификация методов моделирования. Иерархия моделей. Методы формализоанногопредсавления систем.
- •Основные понятия.
- •Свойства системы
- •Понятие сложной системы
- •Методы моделирования.
- •Иерархия моделей (проблема принятия решений)
- •Вопрос 31. Постановка классической задачи вариационного исчисления (задача Лагранжа)
- •Вопрос 32. Прямые методы оптимизации решений при многих критериях.
- •Оптимизация основного частного критерия
- •Методы компенсации
- •Методы порогов сравнимости
Методы порогов сравнимости
Использование бинарных отношений между анализируемыми вариантами решений или альтернатив. Бинарные отношения соответственно определяют условия, при которых:
1) один вариант решения превосходит другой;
2) оба варианта решений эквивалентны;
3) оба варианта решений несравнимы между собой.
При изменении условий меняется и количество сравниваемых альтернатив. При этом изменяется и состав так называемого ядра, состоящего из альтернатив, оказавшихся не худшими при всех сравнениях.Реализация методов основана на использовании численных методов для оценки функций от нечетких/случайных величин без применения методов Монте-Карло.
Вопрос 25. Модель факторного анализа, критерии качества структуры модели. Использование результатов факторного анализа в регрессионных моделях
Для изучения сложных социально-экономических систем возможно использование методов факторного анализа, так как они позволяют
-сократить размерность признакового пространства;
-вскрыть скрытые причинно-следственные связи.
Использование факторного анализа дает следующие преимущества:
Снижение признакового пространства,
;
Лучшая интерпретация результатов исследования;
Выявление и анализ структуры изучаемого процесса;
Сжатия большого массива информации без потери содержательного наполнения признаков.
ФА предполагает разложение ф-ров на
Общие
характерные
модель:
z – вектор стандартизированных элементарных признаков;
f – вектор общих факторов размерности k<m,
W – матрица факторных нагрузок размерности k*m;
u – характерность.
В отличие от МГК не утверждается, что наблюдаемые признаки могут быть однозначно вычислены (без потери информации) по значениям общих факторов f.
Остаток, не объясненный общими факторами, называется характерностью (u) и интерпретируется как влияние специфичных для каждого признака факторов и случайных ошибок.
Для определения коэффициентов модели фа
вычисляем ковариационные матрицы левой и правой частей векторного уравнения
предположения:
Общие факторы стандартизированы и декоррелированы
является единичной матрицей;
Характерные и общие факторы независимы
;
Характерные факторы декоррелированы
ковариационная матрица
является диагональной
Тогда уравнение для ковариаций преобразуется к компактному виду:
где R – корреляционная матрица элементарных признаков,
- редуцированная
корреляционная матрица
(т.к. матрица U
– диагональная, то элементы матрицы
вне диагонали равны соответствующим
элементам матрицы R)
Диагональные
элементы редуцированной матрицы
называются общностями
и обозначаются как
.
Качественно общность обозначает вклад
общих факторов в полную дисперсию
признака:
.
Остаток
– характерность.
определение общностей:
Метод наибольшей корреляции
Мощности
присваивается
наибольшее значение элемента столбца
(строки) матрицы R
кроме диагонального элемента матрицы
R,
равного единицы
Метод триад используется, когда матрица частных корреляций сильно отличается от матрицы парных корреляций (R)
При данном методе
в j-й
строке (столбце) матрицы R
отыскиваются 2 наибольших значения
коэффициентов корреляции
и
и
составляется триада
если вдруг
,
тогда ставим значение = 1
Метод малого центроида
На главной диагонали матрицы R ставятся наибольшие коэффициенты корреляции каждой строки (столбца). По новой матрице вычисляется отношение квадрата суммы элементов соответствующей строки (столбца) к сумме всех элементов матрицы:
Цель расчета – методы направлены на увеличение относительного веса в факторной структуре признаков с сильными корреляционными связями и уменьшение связи слабо коррелируемых признаков.