
- •Вопрос 1. Дискретная матричная модель воспроизводства населения.
- •Вопрос 2. Критерий выбора оптимальной стратегии в условиях полной неопределенности (игры с природой)
- •Вопрос 3.Метод имитационного моделирования (мим) применительно к задачам систем управления запасами.
- •Вопрос 4. Потребительские изокванты и их свойства. Задача потребительского выбора и ее графическая интерпретация. Норма замены благ
- •Вопрос 5. Понятие m-продуктовой n-факторной производственной системы. Линейная оптимизационная модель Канторовича и её применение при анализе затраты - выпуск
- •Вопрос 6. Нелинейные модели потребления. Потребительский спрос. Эластичность спроса и предложения. Спрос как функция цены.
- •Вопрос 7. Экономическое содержание двойственности. Способы получения и практическое использование оценок ресурсов и их св-ва: оценка как мера влияния на функционал.
- •1. Оценка – мера дефицитности ресурсов и продукции.
- •2. Оценка – мера влияния ограничения на функционал модели.
- •3.Оценка – средство определения эффективности технологических способов производства.
- •4.Оценка – средство балансировки затрат и результатов.
- •Вопрос 8. Производственная функция предприятия. Способы моделирования. Практическое значение в задачах анализа и прогнозирования рыночной деятельности предприятия.
- •Вопрос 9. Экономический рост. Модель р.Солоу.
- •Вопрос 10. Предельная эффективность и нормы замещения факторов (благ) в моделях производства и потребления. Связь предельных характеристик факторов (благ) с их рыночной стоимостью
- •Модель производства (min издержек)
- •Модель потребления (max полезности)
- •Вопрос 11. Методы многоуровневой оптимизации. Центральная задача в методе Корнаи-Липтака. Экономическое содержание двойственных оценок в этой задаче.
- •I предприятие II предприятие
- •Вопрос 12. Индекс Гиттинса последовательности доходов: стохастическая модель со случайными доходами. Экономическая интерпретация.
- •Вопрос 13.Модель компенсированного бюджета. Предпосылки построения. Общий вид модели. Функция Лагранжа. Экономическое содержание множителей Лагранжа.
- •Вопрос 14. Структурные уравнения модели л.Клейна.
- •Вопрос 15. Методы оценки параметров в регрессионных моделях и критерии проверки их качества.
- •Метод наименьших квадратов (мнк)
- •Метод максимального правдоподобия
- •Вопрос 16. Эконометрические модели с нестандартными ошибками
- •Обобщенный метод наименьших квадратов
- •Обобщенный метод максимального правдоподобия
- •Метод инструментальных переменных
- •Вопрос 17. Аналитическое решение и графическое представление игры 2x2. Возможности и перспективы применения теории игр при решении соц-экон задач.
- •Вопрос 18. Траектория равновесного роста. Траектория Дж. Фон Неймана.
- •Модель Солоу.
- •Траектория Неймана.
- •Вопрос 19. Модель экономического равновесия. Предпосылки построения. Функция избыточного спроса и ее использование в модели л. Вальраса.
- •Имеется f фирм
- •Имеется r потребителей
- •Вопрос 20. Методы снижения размерности многомерного признакового пространства
- •Вопрос 21. Динамическая модель в. Леонтьева как система линейных дифференциальных уравнений.
- •Вопрос 22. Метод потенциалов для решения стандартной транспортной задачи.
- •Вопрос 23. Модели межрегиональной миграции. Гравитационные модели миграции. Факторы, учитываемые в этих моделях. Понятия и показатели притягательности регионов.
- •Факторные модели оценки показателей миграции
- •Гравитационные модели миграции
- •Вопрос 24. Методы стохастической многокритериальной оптимизации
- •Оптимизация основного частного критерия
- •Методы компенсации
- •Методы порогов сравнимости
- •Вопрос 25. Модель факторного анализа, критерии качества структуры модели. Использование результатов факторного анализа в регрессионных моделях
- •Для определения коэффициентов модели фа
- •Определение факторных нагрузок:
- •Вычисление факторного отображения;
- •Вращение факторного пространства
- •Вопрос 26. Формулировка задачи Больца. Принцип максимума как распространение метода множителей Лагранжа на решение задачи Больца.
- •Вопрос 27. Основные понятия теории линейного программирования. Теоретические основы симплекс-метода.
- •Вопрос 28. Статическая межотраслевая модель в. Леонтьева. Основные соотношения.
- •Сумма элементов матрицы a по любому из столбцов меньше единицы, то есть (т.К. И )
- •Вопрос 29. Робастное статистическое оценивание
- •Выявление грубых ошибок.
- •2.Дисперсионный критерий Граббса
- •4. Обобщенный e-критерий Титьена-Мура.
- •Устойчивое оценивание
- •Метод Хубера.
- •Критерий Хоттелинга
- •Вопрос 30. Основные понятия системного анализа. Свойств систем. Особенности сложных систем. Классификация методов моделирования. Иерархия моделей. Методы формализоанногопредсавления систем.
- •Основные понятия.
- •Свойства системы
- •Понятие сложной системы
- •Методы моделирования.
- •Иерархия моделей (проблема принятия решений)
- •Вопрос 31. Постановка классической задачи вариационного исчисления (задача Лагранжа)
- •Вопрос 32. Прямые методы оптимизации решений при многих критериях.
- •Оптимизация основного частного критерия
- •Методы компенсации
- •Методы порогов сравнимости
Метод максимального правдоподобия
оптимальные оценки параметров обеспечивают максимум так называемой “функции правдоподобия”.
Эта функция - условная плотность совместного распределения (|y, х) п+1-го неизвестного параметра модели 0,1,...n при заданных значениях yt и хit, i=1,..., п; t=1,..., Т,
эти переменные взаимосвязаны между собой эконометрической моделью с функционалом f(, x) в общем случае.
Оптимальные оценкиa0*, a1*,..., an* параметров этого функционала характеризуются в такой ситуации максимальной вероятностью, равной значению функционала правдоподобия в точке (п+1)-мерного пространства оценок с координатами a0*, a1*,..., an*. Такие оценки и называют оценками максимального правдоподобия.
в основе ММП:
модель адекватна процессу изменения (распределению) yt, в том смысле, что ее форма и состав факторов “правильно” выражают причинно-следственные связи. Таким образом, истинная ошибка t является ”абсолютно” случайной переменной.
2. Закон распределения значений ytизвестен. Чаще всего предположение о нормальном характере.
3. Функция плотности ЗР ошибки t эквивалентна функции плотности ЗР переменной yt,
т. е. (t)=(yt), и в общем случае (t )N(0, ).
“лучшим” оценкамa0*, a1*,...,an*“истинных” значений параметров модели 0,1,...,n должен соответствовать наиболее вероятный набор “фактических” значений ошибкие1*, е2*,..., еT*,
максимум произведенияр(е1)р(е2)...р(еТ) соответствует наиболее вероятному сочетанию значений t, t=1, 2,..., T, обеспечиваемому “наилучшими” оценками параметров модели.
решение задачи оценки параметров м б получено в результате максимизации целевой функции:
по неизвестным параметрам 0,1,...,n и 2
Целевая функция типа (2.109) называется функцией максимального правдоподобия.
В таком случае в
условиях независимости разновременных
ошибок t
и t–i
оптимальныезначенияa0*, a1*,...,an* и e2 в этом случае могут быть найдены путем решения следующей системы из п+2-х дифференциальных уравнений в частных производных по этим параметрам:
Векторно-матричная форма:
у=Х+,
вектор ошибки можно представить в следующем виде:
=у–Х,
Дифференцируяпо неизвестному вектору параметров и по неизвестной дисперсии ошибки 2, получим
l/
=
(–Ху+
ХХ)=0;
l/2=
(у–Х)(у
–Х)=0.
Поскольку 20, из первого уравнения системы (2.116) непосредственно получаем вектор оценок ММП коэффициентов линейной эконометрической модели в следующем виде:
a*=a=(ХХ)–1Ху,
а из второго – оценку ММП дисперсии ошибки эконометрической модели:
е2
=
(у–Хa)(у
–Хa)=
Выражение (2.117) ничем не отличается от своего аналога (2.8), полученного с использованием МНК, а оценка дисперсии ошибки модели, полученная на основании выражения (2.118), является смещенной. Вследствие этого на практике используют несмещенную оценку дисперсии, определяемую следующим образом:
Таким образом, при предположении о нормальном законе распределения ошибки эконометрической модели и ее свойствах, определенных выражениями (2.20)–(2.24), оценки ее коэффициентов, полученные с использованием методов максимального правдоподобия и наименьших квадратов, совпадают. Аналогичное совпадение отмечается и у ковариационных матриц этих оценок.
Если же ошибки модели распределены по другому закону (например, Гаусса с тяжелыми хвостами, Стьюдента и т. п.), то вообще говоря, выражения для оценки коэффициентов, полученные на основе ММП, будут отличаться от их аналогов, полученных с использованием МНК.