
- •Основные положения клеточной теории. Клетка – структурная и функциональная единица живого.
- •Содержание химических элементов в клетке. Вода и другие неорганические вещества, их роль в жизнедеятельности клетки.
- •Органические вещества клетки: липиды, атф, биополимеры (углеводы, белки, нуклеиновые кислоты) и их роль в клетке.
- •4. Ферменты, их роль в процессе жизнедеятельности.
- •Особенности строения клеток прокариот и эукариот.
- •6. Основные структурные компоненты клетки
- •7. Поверхностный аппарат клетки.
- •Транспорт молекул через мембраны
- •Эндоцитоз.
- •Экзоцитоз.
- •Диацитоз.
- •Рецепторная функция и ее механизм.
- •Структура и функции клеточных контактов.
- •Локомоторная и индивидуализирующая функции пак.
- •Органеллы общего значения. Эндоплазматическая сеть.
- •Эндоплазматическая сеть
- •Комплекс Гольджи.
- •Накопительную
- •Секреторную
- •Агрегационную
- •14. Лизосомы.
- •15. Пероксисомы.
- •Митохондрии.
- •Рибосомы.
- •18. Пластиды.
- •Клеточный центр.
- •Органеллы специального значения.
- •Ядро клетки. Строение и функции.
- •Хроматин.
- •Ядерный сок (кариолимфа).
- •Ядрышко.
- •Обмен веществ и превращение энергии в клетке.
- •Фотосинтез:
- •Хемосинтез.
- •1. Физиологические свойства и особенности функционирования возбудимых тканей
- •1. Физиологическая характеристика возбудимых тканей
- •2. Законы раздражения возбудимых тканей
- •3. Понятие о состоянии покоя и активности возбудимых тканей
- •4. Физико-химические механизмы возникновения потенциала покоя
- •5. Физико-химические механизмы возникновения потенциала действия
- •2. Физиологические свойства нервов и нервных волокон.
- •1. Физиология нервов и нервных волокон. Типы нервных волокон
- •2. Механизмы проведения возбуждения по нервному волокну. Законы проведения возбуждения по нервному волокну
- •3. Физиология мышц
- •1. Физические и физиологические свойства скелетных, сердечной и гладких мышц
- •2. Механизмы мышечного сокращения
- •4. Физиология синапсов
- •1. Физиологические свойства синапсов, их классификация
- •2. Механизмы передачи возбуждения в синапсах на примере мионеврального синапса
- •3. Физиология медиаторов. Классификация и характеристика
- •5. Физиология центральной нервной системы
- •1. Основные принципы функционирования цнс. Строение, функции, методы изучения цнс
- •2. Нейрон. Оособенности строения, значение, виды
- •3. Рефлекторная дуга, ее компоненты, виды, функции
- •Функциональные системы организма
- •Виды торможения, взаимодействие процессов возбуждения и торможения в цнс. Опыт и. М. Сеченова
- •9. Физиология эндокринной системы. Понятие о железах внутренней секреции и гормонах, их классификация
- •1. Общие представления об эндокринных железах
- •2. Свойства гормонов, механизм их действия
- •3. Синтез, секреция и выделение гормонов из организма
- •4. Регуляция деятельности эндокринных желез
- •11. Высшая нервная деятельность
- •1. Понятие о высшей и низшей нервной деятельности
- •12. Физиология сердца
- •1. Компоненты системы кровообращения. Круги кровообращения
- •13. Физиология дыхания. Механизмы внешнего дыхания
- •1. Сущность и значение процессов дыхания
- •3. Механизм вдоха и выдоха
- •4. Понятие о паттерне дыхания
- •14. Физиология крови
- •1. Гомеостаз. Биологические константы
- •2. Понятие о системе крови, ее функции и значение. Физико-химические свойства крови
- •15. Физиология почек
- •1. Функции, значение мочевыделительной системы
- •2. Строение нефрона
- •16. Физиология системы пищеварения
- •1. Понятие о системе пищеварения. Ее функции
- •2. Типы пищеварения
- •3. Секреторная функция системы пищеварения
- •Костно-мышечная система
15. Пероксисомы.
Пероксисомы (микротельца) по строению сходны с лизосомами. Они состоят из матирикса и нуклеотида. Матрикс пероксисом содержит до 15 ферментов. Наиболее важные из них пероксидаза и каталаза, оксидаза D-аминокислот и уратроксидаза. Нуклеотид пероксисомы соответствует области конденсации ферментов. Пероксисомы образуются в ЭПС, отпочковываясь от агранулярной ЭПС, их ферменты частично синтезируются в гранулярной ЭПС, частично в гиалоплазме. Мембрана пероксисом непроницаема для ионов и низкомолекулярных субстратов.
Пероксисомы – главный центр образования кислорода клетки. В результате окисления аминокислот, углеводов образуется Н2О2, которая благодаря каталазе распадается на воду и О2. Крупные пероксисомы печени и почек играют важную роль в обезвреживании ряда веществ. Помимо этого они участвуют в катаболизме (в обмене аминокислот, оксалата и полиаминов).
В настоящее время открыт класс наследственных болезней – пероксисомные болезни, развитие которых обусловлекнно дефектом пероксисом. При этих болезнях поражаются органы, развиваются нарушения нервной системы, вызывающих смерть больных в детском возрасте.
Митохондрии.
Митохондрии являются универсальным мембранными органоидами клеток. Митохондрии имеют 2 мембраны – наружную и внутреннюю. Между этими мембранами нахлдится межмембранное пространство. В некоторых участках мембраны образуют контактные сайты. В митохондрии находится митохондриальный матрикс. В нем локализуются молекулы митохондриальной ДНК, собственные рибосомы, РНК, белки, низкомолекулярные метаболиты.
В наружной мембране содержится более 80% липидов и менее 20% белков, а во внутренней – наоборот. Среди белков наружной мембраны имеются порины, формирующие поры. Через них из гиалоплазмы поступают молекулы определенного размера. В результате этого наружная мембрана имеет неспецифическую проницаемость. В зоне контактных сайтов локализуются специальные рецепторы и канальные белки. Внутренняя мембрана образует кристы. На них со стороны митохондриального матрикса локализуются грибовидные тельца – белковые компоненты, которые осуществляют синтез АТФ.
Симптомы большинства митохондриальных болезней проявляются с возрастом, что вероятно, обусловлено накоплением мутаций, осуществляемыми Н2О2 и О2. Т.к. эти вещества генерируются в максимальных количествах при окислительном фосфолирировании, чаще поражаются органы, наиболее нуждающиеся в митохондриальной энергии (ЦНС, сердце, скелетные мышцы, почки, печень, островки Лангерганса).
Жизненный цикл митохондрий около 10 суток, их разрушение происходит путем аутофагии, а гибнущие органеллы замещаются новыми, которые формируются путем пеершнуровки предшествующих. Репликация митохондриальной ДНК происходит в любые фазы клеточного цикла независимо от ядерной ДНК.
Функции митохондрий:
Дыхательный и энергетический центр клетки – в них усваивается кислород необходимый для третьего (аэробного) этапа диссимиляции.
Синтез своих ДНК, РНК, части белков.
Рибосомы.
Рибосомы – органоиды общего значения, не имеющие мембранного строения. Место синтеза белка. D=15-35 нм. Находятся в цитоплазме, пластидах, митохондриях. Большая часть рибосом образуется в ядрышке ядра – в виде 2 субъединиц, которые выходят из ядра и соединяются в рибосому, которая состоит из большой и малой субъединицы. В состав каждой субъединицы входят р-РНК и белок.
Рибосомы, соединяясь с и-РНК при синтезе белка по 4-40, образуют полисомы (полирибосомы).
Рибосомы связаны с гранулярной ЭПС, синтезируют обычно секретирующие белки, или остаются в пределах мембран внутри клетки.
Функции рибосом – синтез белков.