Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
fiziologia.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
2 Mб
Скачать

2. Ионные каналы их структура и типы.

Неорганические ионы натрия Na+, калия K+, хлора CI- и кальция Ca++ проходят через клеточную мембрану по специальным каналам. При открывании и закрывании ионных каналов изменяется распределение зарядов и происходит сдвиг мембранного потенциала . Передача сигналов нервными клетками зависит от каналов с регулируемой проницаемостью - так называемых каналов с воротами. Ионные потенциал-зависимые каналы - это каналы, которые открываются и закрываются в ответ на изменение мембранного потенциала , например, натриевые каналы , ответственные за потенциал действия . Механизм действия потенциал-зависимых каналов изучают в системе фиксации потенциала. Если мембранный потенциал поддерживать на уровне потенциала покоя , натриевый ток практически отсутствует, что означает, что натриевые каналы закрыты. Если теперь сдвинуть мембранный потенциал в положительную сторону и удерживать его на постоянном уровне, то потенциал-зависимые натриевые каналы откроются и ионы натрия начнут передвигаться в клетку по градиенту концентрации. Этот натриевый ток достигнет максимума примерно через 0,5 мс после того, как установится новое значение потенциала. Через несколько миллисекунд ток падает почти до нуля, даже если клеточная мембрана остается деполяризованной, что означает, что каналы, открывшиеся на какой- то момент, снова закрылись. Закрывшись, каналы переходят в инактивированное состояние, отличающееся от первоначального закрытого состояния, при котором они были способны открыться в ответ на деполяризацию мембраны.

Биомембрана состоит из белков, погруженных в липидный бислой, эффективно препятствующий проникновению гидрофильных веществ через мембрану. Погруженные в бислой белки часто формируют гидрофильные каналы, через которые могут проходить неорганические ионы и другие водорастворимые вещества.

Лиганд-управляемые каналы - ионные каналы, расположенные в постсинаптической мембране в нервно-мышечных соединениях . Связывание медиатора с этими каналами с наружной стороны мембраны вызывает изменения в их конформации - каналы открываются, пропуская через мембрану ионы и тем самым изменяя мембранный потенциал . они генерируют электрический сигнал, сила которого зависит от интенсивности и продолжительности внешнего химического сигнала, т.е. от того, сколько медиатора выводится в синаптическую щель и как долго он там остается. Из всех лиганд-зависимых ионных каналов наиболее изучен Никотиновый ацетилхолиновый рецептор .

действие натрий-калиевого насоса можно представить следующим образом. 1. С внутренней стороны мембраны к молекуле белка-переносчика поступают АТФ и ионы натрия, а с наружной — ионы калия.2. Молекула переносчика осуществляет гидролиз одной молекулы АТФ.3. При участии трех ионов натрия за счет энергии АТФ к переносчику присоединяется остаток фосфорной кислоты (фосфорилирование переносчика); сами эти три иона натрия также присоединяются к переносчику.4. В результате присоединения остатка фосфорной кислоты происходит такое изменение формы молекулы переносчика (конформация), что ионы натрия оказываются по другую сторону мембраны, уже вне клетки.5. Три иона натрия выделяются во внешнюю среду, а вместо них с фосфорилированным переносчиком соединяются два иона калия. 6. Присоединение двух ионов калия вызывает дефосфорилирование переносчика — отдачу им остатка фосфорной кислоты.7. Дефосфорилирование, в свою очередь, вызывает такую конформацию переносчика, что ионы калия оказываются по другую сторону мембраны, внутри клетки. 8. Ионы калия высвобождаются внутри клетки, и весь процесс повторяется. Значение натрий-калиевого насоса для жизни каждой клетки и организма в целом определяется тем, что непрерывное откачивание из клетки натрия и нагнетание в нее калия необходимо для осуществления многих жизненно важных процессов: осморегуляции и сохранения клеточного объема, поддержания разности потенциалов по обе стороны мембраны, поддержания электрической активности в нервных и мышечных клетках, для активного транспорта через мембраны других веществ (сахаров, аминокислот). Большие количества калия требуются также для белкового синтеза, гликолиза, фотосинтеза и других процессов. Примерно треть всей АТФ, расходуемой животной клеткой в состоянии покоя, затрачивается именно на поддержание работы натрий-калиевого насоса.

Кальциевые каналы — это тип ионных каналов, избирательно проницаемых для ионов кальция Ca2+. Часто данный термин синонимичен потенциалуправляемым кальциевым каналам, хотя также существуют и лигандуправляемые кальциевые каналы. Например, рецептор инозитолтрифосфата (IP3) является лигандуправляемым кальциевым каналом, и ему соответствует лиганд IP3. Рецептор IP3 находится в мембране эндоплазматического ретикулума и саркоплазматического ретикулума мышц. После связывания с IP3 освобождает ионы кальция из кальциевых депо ретикулума. Появление IP3 в цитоплазме клетки может быть вызвано активацией рецепторов, связанных с G-белками.

Блокаторы кальциевых каналов применяют для лечения артериальной гипертензии.

Эпителиальный натриевый канал — мембранный белок, проводящий ионы Li, Na и протоны. Он постоянно активен и, вероятно, является одним из самых избирательных ионных каналов. 4 трансмембранных домена, сегмент s4 в каждом домене является потенциалчувствительным модулем а сегменты 5и6 Р(пэ)-участок=пора. То есть в каждом домене 2 модуля и они независимы и обладают подвижностью. В «Р» участке всех 4х доменов есть 2 кольца из высококонсервативных аминокислот:

EEDD-наружное кольцо(специфичен для ТТХ и STX)

DEKA- внутреннее кольцо – это сам селективный фильтр натриевых каналов.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]