Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
fiziologia.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
2 Mб
Скачать

2. Нейро-гуморальныя регуляция сердца

Гуморальная регуляция деятельности сердца осуществляется биологически активными веществами, выделяющимися в кровь и лимфу из эндокринных желез, а также ионным составом межклеточной жидкости. Эта регуляция в наибольшей степени присуща адреналину, секретируемому мозговым слоем надпочечников. Адреналин выделяется в кровь при эмоциональных нагрузках, физическом напряжении и других состояниях (см. разд. 5.2.2 и 6.4.1). Его взаимодействие с (β—адренорецепторами кардиомиоцитов приводит к активации внутриклеточного фермента аденилатциклазы. Последний ускоряет образование циклического АМФ (цАМФ). В свою очередь, цАМФ необходим для превращения неактивной фосфорилазы в активную. Активная фосфорилаза обеспечивает снабжение миокарда энергией путем расщепления внутриклеточного гликогена с образованием глюкозы. Адреналин повышает также проницаемость клеточных мембран .для ионов Са2+.

Важное значение имеет гормон поджелудочной железы и кишки — глюкагон. Он оказывает на сердце положительный инотропный эффект путем стимуляции аденилатциклазы. Гормон щитовидной железы — тироксин — увеличивает частоту сердечных сокращений и повышает чувствительность сердца к симпатическим воздействиям. Гормоны коры надпочечников — кортикостероиды, биологически активный полипептид — ангиотензин II, вещество энтерохромаффинных клеток кишки — серотонин — увеличивают силу сокращений миокарда.

Большое влияние на деятельность сердечной мышцы оказывает ионный состав среды. Повышение содержания во внеклеточной среде К+ угнетает деятельность сердца. При этом вследствие изменения градиента концентрации иона увеличивается проницаемость мембран для К+ падают возбудимость, скорость проведения возбуждения и длительность ПД. В этих условиях синусно—предсердный узел перестает выполнять роль водителя ритма. Подобным образом на сердце влияют ионы НСО3— и Н+. Ионы Са2+ повышают возбудимость и проводимость мышечных волокон, активируя фосфорилазу и обеспечивая сопряжение возбуждения и сокращения.

3. Метод фиксации потенциала. Его роль для доказательства ионной природы потенциалов ( гигантский аксон кальмара).

Функцию ионных каналов изучают различными способами. Наиболее распространенным является метод фиксации напряжения, или иначе "voltage-clamp". Сущность метода заключается в том, что с помощью специальных электронных систем в процессе опыта изменяют и фиксируют на определенном уровне мембранный потенциал. При этом измеряют величину ионного тока, протекающего через мембрану. Если разность потенциалов постоянна, то, в соответствии с законом Ома, величина тока пропорциональна проводимости ионных каналов. В ответ на ступенчатую деполяризацию открываются те или иные каналы, соответствующие ионы входят в клетку по электрохимическому градиенту, то есть возникает ионный ток, который деполяризует клетку. Это изменение регистрируется с помощью усилителя, и через мембрану пропускается электрический ток, равный по величине, но противоположный по направлению мембранному ионному току. При этом трансмембранная разность потенциалов не изменяется. Совместное использование метода фиксации потенциала и специфических блокаторов ионных каналов привело к открытию различных типов ионных каналов в клеточной мембране.

Билет 13. 1. Функции гипоталамуса.

Гипоталамус — филогенетически старый отдел промежуточного мозга, который играет важную роль в поддержании постоянства внутренней среды и обеспечении интеграции функций автономной, эндокринной, соматической систем. Этот небольшой по объему, но важный по функциям отдел лежит на дне и по бокам III желудочка, вентральное таламуса. Он включает в себя такие анатомические структуры, как серый бугор, воронку, которая заканчивается гипофизом, и сосцевидные, или мамиллярные, тела. Верхнюю границу гипоталамуса формируют конечная пластинка и зрительный перекрест (рис. 3.27). Сбоку гипоталамус ограничен зрительным трактом и внутренней капсулой, а сзади примыкает к среднему мозгу. Расположение основных ядерных групп гипоталамуса 1 — паравентрикулярное ядро, 2 — спайка, 3 — свод, 4 — мозолистое тело, 5 — таламус, 6 — шишковидное тело, 7 — водопровод, 8 — средний мозг, в — заднее ядро, 10 — сосцевидное тело, 11 — дорсомедиальное ядро, 12 — латеральное ядро, 13 — вентромедиальное ядро, 14 — нейрогипофиз, 16 — аденогипофиз, 16 — зрительный перекрест, 17 — супраоптическое ядро.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]