Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
печать шпоры мпт.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
708.61 Кб
Скачать

Интерфейс быстрых ацп с мпс

1) nШД ≥ nАЦП

− выбор порта для запуска АЦП

− выбор порта разрешения выдачи кода АЦП

Программное управление АЦП:

OUT PORT1 ; запуск АЦП

IN PORT2 ; чтение кода АЦП

Задержки позволяют согласовывать быстродействие АЦП и МПС.

2) nШД < nАЦП − код разбивают на 2 байта и записывают в буферные регистры; МП считывает сначала мл. байт, затем ст. байт.

OUT PORT1 ; запуск АПЦ

IN PORT2 ; чтение Мл. Б. кода

IN PORT3 ; чтение Ст. Б. кода

Интерфейс медленных ацп с мпс

1) Асинхронный метод с квитированием: после запуска АЦП МП постоянно опрашивает вывод DR, в случае готовности данных происходит считывание кода.

ADCONV: MVI A, 01H

OUT 80H; D0 ← 1

XRA A

OUT 80H; D0 ← 0 (запуск АЦП)

TEST: IN 82H

ANI 1000 0000B; выделить D7

JNZ TEST; цикл, если D7 = 1

IN 81H; чтение мл. байта кода

MOV C, A

IN 82H; чтение ст. байта кода

ANI 0000 0011B; выделить D1, D0

MOV B, A; в регистровой паре ВС − код АЦП

RET

8) Микроконтроллеры pic18: общая характеристика, особенности архитектуры и системы команд.

Компания Microchip выпускает семейство 8-разрядных микроконтроллеров PIC18, которое идеально подходит для приложений, требующих быстродействия 10-16 MIPS, с объемом памяти программ до 128 Кбайт, корпусах от 18 до 100 выводов.

Семейство PIC18 обладает следующими отличительными чертами:

    • эффективное кодирование на языке Си;

    • 16-разрядные слова программ;

    • встроенные АЦП и программируемый генератор;

    • векторная приоритетная система прерываний (высокий и низкий приоритеты);

Семейство PIC18 имеет МК с аппаратной поддержкой современных интерфейсов:

  1. Интегрированный полноскоростной USB 2.0 с возможностью передачи данных со скоростью до 12 Mбит/сек.

  2. Высокоскоростной последовательный протокол CAN с гарантированной доставкой данных для приложений, требующих высокую надежность и скорость до 1 Мбайт/сек.

  3. Интегрированный Ethernet интерфейс для контроля и управления удаленными объектами, объединенными в общую сеть.

  4. Встроенный драйвер ЖКИ, позволяющий управлять различными типами жидкокристаллических индикаторов с возможностью работы в режиме микропотребления.

Выпускаются МК двух вариантов: PIC18Cxxx и PIC18Fxxx. PIC18C имеют однократно программируемую память программ (OTPROM). PIC18F имеют флэш-память программ (Flash-ROM). Оба этих варианта МК могут быть запрограммированы непосредственно в устройстве с помощью последовательного программирования всего по трем проводам.

Основные особенности семейства PIC18 следующие.

Организация памяти

В PIC18 реализовано 3 типа памяти: память программ, память данных, память данных EEPROM.

Память программ адресуется с помощью 21-разрядного счетчика команд PC, что позволяет иметь адресное пространство 2 Мбайта. Однако, выпускаемые МК имеют объем программной памяти в диапазоне от 16 до 128 Кбайт. В отличие от PIC16, PIC17 память программ PIC18 адресуется побайтно. Команды в памяти занимают 2 байта (однословные) или 4 байта (двухсловные), что редко. Команды имеют только четные адреса, поэтому младший бит PC всегда равен 0. Область памяти выше 2000000h отведена под идентификационные номера, регистры калибровки и конфигурации. При выполнении программы можно прочитать содержимое программной памяти, используя команду TBLRD.

Память данных организована как массив 8-разрядных регистров (регистровый файл), каждый из которых имеет 12-разрядный адрес. Все адресное пространство 4096 байт разделено на 16 банков объемом по 256 байт. Номер адресуемого банка содержится в четырех младших битах регистра выбора банка BSR. Характерной особенностью PIC18 является то, что все регистры специальных функций (РСФ) размещены только в банке 15, причем занимают его старшую (по адресации) половину. В банках 0 – 14 (их количество определяется конкретным типом МК) располагаются регистры общего назначения (РОН).

Чтобы гарантировать быстрый доступ к наиболее часто используемым данным и к РСФ без использования регистра BSR, в PIC18 применено оригинальное решение под условным названием «банк доступа» (Access Bank). В этот банк включены 128 регистра РОН из младшей половины банка 0 и старшая половина регистров из банка 15, т.е. все РСФ. Специальный «бит доступа к памяти» (a = 0) в коде команды показывает, что старшие разряды адреса игнорируются и обращение идет к банку доступа, а содержимое BSR не используется. Глобальные переменные помещаются именно в банк доступа, тем самым существенно повышается производительность работы компиляторов языка Си.

Объем стека в PIC18 существенно расширен и составляет массив из 31 ячейки памяти по 21 биту в каждой. Также добавлены команды непосредственной работы со стеком PUSH и POP, которые позволяют программно сохранять в стеке оперативные данные. Очень полезной архитектурной особенностью PIC18 является наличие теневого «быстрого» стека. Этот стек используется подпрограммой обработки прерывания высокого уровня для запоминания содержимого регистров STATUS, WREG, BSR. Если прерывания не используются, то теневой стек можно использовать для сохранения регистров STATUS, WREG, BSR при вызове подпрограммы.

Система прерывания

Система прерывания в PIC18 имеет векторную приоритетную структуру. Вектор 000008h соответствует прерыванию с высоким приоритетом, вектор 000018h – с низким приоритетом. Каждому источнику прерывания соответствуют три бита (разрешение, флаг и бит назначения высокого или низкого приоритета). Для прерывания низкого уровня необходимо сохранять содержимое регистров STATUS, WREG и BSR, так как теневой стек автоматически используется только для обработки прерывания высокого уровня.

Порты ввода/вывода

В порты ввода/вывода добавлены регистры-защелки. В результате повысилась предсказуемость результата работы некоторых команд. При выполнении операции чтение/изменение/запись данные при чтении берутся из регистра-защелки. Результат записывается туда же. Выходной сигнал поступает из регистра-защелки через буферный усилитель на вывод МК. Состояние вывода может быть прочитано командой чтения, хотя уровень выходного сигнала на выводе реально зависит от величины нагрузки.

Генератор тактовых импульсов

Новым устройством узла тактового генератора является схема умножения частоты кварцевого резонатора на 4. При использовании резонатора на 10 МГц внутренняя тактовая частота достигает 40 МГц. Эту функцию удобно использовать для уменьшения электромагнитного излучения при сохранении высокой скорости выполнения программы.

Для устройств с батарейным питанием важна способность PIC18 переключать системную тактовую частоту с основного тактового генератора на альтернативный низкочастотный. Обычно в качестве низкочастотного генератора выбирают таймер реального времени Т1 на 32 кГц. Системная частота переключается специальным битом в регистре управления тактовым генератором.

Система команд PIC18

Набор команд состоит из 75-ти 16-разрядных команд (одно слово) и четырех 32-разрядных команд (два слова). Из двух слов состоят команды MOVFF, CALL, GOTO, LFSR. Большинство команд в PIC18 такие же, как и в PIC16, но есть и новые, а также некоторые различия.

Одной из особенностью команд, в которых используются регистры, является наличие бита доступа к памяти. Поэтому операнды в таких командах в общем случае записываются в виде:

MNEMONIC f, d, a ,

где обозначено: MNEMONIC – мнемокод команды; f – адрес (или имя) регистра; d – бит размещения результата (d=0 – результат в рабочем регистре WREG, d=1 – результат в регистре f); a – бит доступа к памяти (a=0 – обращение к банку доступа, содержимое регистра BSR игнорируется, a=1 – обращение к памяти данных с учетом регистра BSR).

Например: INCF 05h, 0, 0 - инкремент регистра с адресом 05h, результат поместить в WREG, использовать банк доступа.

Кроме того, появились команды условных переходов, в которых условия – это флаги (признаки результатов операций), находящиеся в регистре STATUS. Это упрощает процесс программирования и сокращает длину команд перехода.

В PIC18 значительно улучшена организация чтения табличных данных из памяти программ, а также появилась возможность записи во флэш-память. Для этой цели используются специальные регистры-указатели TBLPTR (указывает на ячейку памяти) и TABLAT (содержит считываемый или записываемый байт данных). Две команды TBLRD (чтение из памяти программ) и TBLWT (запись в память программ) позволяют читать по два байта из каждой отведенной под команду ячейки памяти, а также записывать в них. Команды можно использовать с различными режимами автоматической индексации.