Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
4.Электрические цепи переменного тока.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
1.28 Mб
Скачать

Электрические lc-фильтры

Электрический фильтр - это четырехполюсник, устанавливаемый между источником питания и нагрузкой и служащий для беспрепятственного (с малым затуханием) пропускания токов одних частот и задержки (или пропускания с большим затуханием) токов других частот.

Полоса пропускания или полоса прозрачности фильтра - Это диапазон частот, пропускаемых фильтром без затухания (с малым затуханием);

Полоса затухания или полоса задерживания (режекции) фильтра - это диапазон частот, пропускаемых с большим затуханием.

Качество фильтра считается тем выше, чем ярче выражены его фильтрующие свойства, т.е. чем сильнее возрастает затухание в полосе задерживания.

В качестве пассивных фильтров обычно применяются четырехполюсники на основе катушек индуктивности и конденсаторов. Возможно также применение пассивных RC-фильтров, используемых при больших сопротивлениях нагрузки.

Фильтры применяются как в радиотехнике и технике связи, где имеют место токи достаточно высоких частот, так и в силовой электронике и электротехнике.

Для упрощения анализа будем считать, что фильтры составлены из идеальных катушек индуктивности и конденсаторов, т.е. элементов соответственно с нулевыми активными сопротивлением и проводимостью. Это допущение достаточно корректно при высоких частотах, когда индуктивные сопротивления катушек много больше их активных сопротивлений ( ).

Фильтрующие свойства четырехполюсников обусловлены возникающими в них резонансными режимами – резонансами токов и напряжений. Фильтры обычно собираются по симметричной Т- или П-образной схеме, т.е. при (см. лекцию №14). В этой связи при изучении фильтров будем использовать введенные в предыдущей лекции понятия коэффициентов затухания и фазы.

Классификация фильтров в зависимости от диапазона пропускаемых частот приведена в табл. 1.

 

Таблица 1. Классификация фильтров

Название фильтра

Диапазон пропускаемых частот

Низкочастотный фильтр (фильтр нижних частот)

Полосовой фильтр (полосно-пропускающий фильтр)

и

В соответствии с материалом, изложенным в предыдущей лекции, если фильтр имеет нагрузку, сопротивление которой при всех частотах равно характеристическому, то напряжения и соответственно токи на его входе и выходе связаны соотношением

,

т.е. в соответствии с (1) и , которое указывает на отсутствие потерь в идеальном фильтре, а значит, идеальный фильтр должен быть реализован на основе идеальных катушек индуктивности и конденсаторов. Вне области пропускания (в полосе затухания) в идеальном случае и

Связь коэффициентов четырехполюсника с параметрами элементов Т-образной схемы замещения определяется соотношениями (см. лекцию № 14)

(2)

(4)

 

Из уравнений четырехполюсника, записанных с использованием гиперболических функций (см. лекцию № 14), вытекает, что

- вещественная переменная, а следовательно,

, то на основании (5)

: ,

которому удовлетворяют частоты, лежащие в диапазоне

(7)

Анализ соотношения (7) показывает, что с ростом частоты w в пределах, определяемых неравенством (6), характеристическое сопротивление фильтра уменьшается до нуля, оставаясь активным. Поскольку, при нагрузке фильтра сопротивлением, равным характеристическому, его входное сопротивление также будет равно , можно сделать заключение, что фильтр работает в режиме резонанса, что было отмечено ранее. При частотах, больших

На рис. 2 приведены качественные зависимости .

Следует отметить, что вне полосы пропускания

(8)

Так как вне полосы прозрачности .

В полосе задерживания коэффициент затухания . Существенным при этом является факт постепенного нарастания будет отличен от нуля.

Другим вариантом простейшего низкочастотного фильтра может служить четырехполюсник по схеме на рис. 1,б.

Схема простейшего высокочастотного фильтра приведена на рис. 3,а.

; (9)

(11)

Как и для рассмотренного выше случая, А – вещественная переменная. Поэтому на основании (9)

. (12)

Характеристическое сопротивление фильтра

изменяясь в пределах от нуля до в ограниченном диапазоне частот.

Вне области пропускания частот

(14)

при и и высокочастотного с полосой пропускания . Схема простейшего полосового фильтра

для него.

Урежекторного фильтра полоса прозрачности разделена на две части полосой затухания. Схема простейшего режекторного фильтра и качественные зависимости

В заключение необходимо отметить, что для улучшения характеристик фильтров всех типов их целесообразно выполнять в виде цепной схемы, представляющей собой каскадно включенные четырехполюсники. При обеспечении согласованного режима работы всех n звеньев схемы коэффициент затухания , что приближает фильтр к идеальному.

RC-фильтры

Благодаря тому что импеданс конденсатора, равный Zc = -j/ωС, зависит от частоты, с помощью конденсаторов и резисторов можно строить частотно-зависимые делители напряжения, которые будут пропускать только сигналы нужной частоты, а все остальные подавлять. В этом разделе вы познакомитесь с примерами простейших RС-фильтров, к которым мы будем неоднократно обращаться в дальнейшем.

Рис. 1.52. Фильтр высоких частот.

Фильтры высоких частот. На рис. 1.52 показан делитель напряжения, состоящий из конденсатора и резистора. Согласно закону Ома для комплексных величин,

I = Uвх/Zполн = Uвх/R - (j/ωC) = Uвх[R + j/ωC)]/R2 + 1/ω2C2.

(Окончательный результат получек после умножения числителя и знаменателя на комплексное число, сопряженное знаменателю.) Итак, напряжение на резисторе R равно

Uвых = IZR = IR = Uвх[R + (j/ωС)R]/R2+1/ω2C2.

Чаще всего нас интересует не фаза, а амплитуда Uвых:

Uвых = (UвыхUвых*)1/2 = UвхR/[R2 + (1/ω2C2)]1/2.

Сравните полученный результат с выражением для резистивного делителя:

Uвых = UвхR1/(R1 + R2).

Векторное представление импеданса RС - цепи (рис. 1.53) показано на рис. 1.54.

Рис. 1.53.

Рис. 1.54.

Итак, если не принимать во внимание сдвиг фаз, а рассматривать только модули комплексных амплитуд, то «отклик» схемы будет определяться следующим образом:

Uвых = UвхR/[R2 + (1/ω2C2)]1/2 = Uвх2πƒRC/[1 + (2πƒRC)]1/2.

График этой зависимости представлен на рис. 1.55. Такой же результат мы бы получили, если бы определили отношение модулей импедансов как в упражнении 1.17 и в примере перед этим упражнением; числитель представляет собой модуль импеданса нижнего плеча делителя R, а знаменатель - модуль импеданса последовательного соединения R и С.

Рис. 1.55. Частотная характеристика фильтра высоких частот.

Как вы видите, на высоких частотах выходное напряжение приблизительно равно входному (ω > 1/RC), а на низких частотах выходное напряжение уменьшается до нуля. Мы пришли к важному результату, запомните его. Подобная схема, по понятным причинам, называется фильтром высоких частот. На практике ее используют очень широко. Например, в осциллографе предусмотрена возможность связи по переменному току между исследуемой схемой и входом осциллографа. Эта связь обеспечивается с помощью фильтра высоких частот, имеющего перегиб характеристики в области 10 Гц (связь по переменному току используют для того, чтобы рассмотреть небольшой сигнал на фоне большого напряжения постоянного тока). Инженеры часто пользуются понятием «точки излома» -3 дБ для фильтра (или любой другой схемы, которая ведет себя как фильтр)! В случае простого RC - фильтра высоких частот точка излома -3 дБ определяется выражением:

ƒ3дб = 1/2πRC.

Обратите внимание, что конденсатор не пропускает ток (ƒ = 0). Самый распространенный пример использования конденсатора-это использование его в качестве блокирующего конденсатора постоянного тока. Если возникает необходимость обеспечить связь между усилителями, то почти всегда прибегают к помощи конденсатора. Например, у любого усилителя звуковой частоты высокого класса все входы имеют емкостную связь, так как заранее не известно, какой уровень постоянного тока будут иметь входные сигналы. Для обеспечения связи необходимо подобрать R и С таким образом, чтобы все нужные частоты (в данном случае 20 Гц - 20 кГц) поступали на вход без потерь (без деления на входе).

Рис. 1.56. а - Изменение реактивного сопротивления индуктивн остей и конденсаторов в зависимости от частоты. Все декады одинаковы и отличаются лишь масштабом. б - Увеличенное изображение одной декады из графика А. график построен для стандартных компонентов, имеющих точность 20%.

В качестве примера рассмотрим фильтр, показанный на рис. 1.57. Это фильтр высоких частот с точкой перегиба 3 дБ на частоте 15,9 кГц. Импеданс нагрузки, подключаемой к фильтру, должен быть значительно больше 1 кОм. иначе нагрузка будет искажать выходное напряжение фильтра. Источник сигнала должен обеспечивать возможность подключения нагрузки 1 кОм без значительной аттенюапии (потери амплитуды сигнала), иначе фильтр будет искажать выход источника сигнала.

Рис. 1.57. Рис. 1.58. Фильтр низких частот.

Фильтры низких частот. Если поменять местами R и С (рис. 1.58), то фильтр будет вести себя противоположным образом в отношении частоты. Можно показать, что Uвых = [1/1 + ω2R2С2)1/2] Uвх. График этой зависимости представлен на рис. 1.59. Такой фильтр называют фильтром низких частот. Точка -3 дБ на характеристике фильтра находится на частоте ƒ = 1/2πRC. Фильтры низких частот находят очень широкое применение. Например, их используют для устранения влияния близлежащих радио - и телевизионных станций (550 кГц - 800 МГц), на работу усилителей звуковых частот и других чувствительных электронных приборов.

Рис. 1.59 Частотная характеристика фильтра низких частот.

Упражнение 1.21. Докажите справедливость выражения для выходного напряжения фильтра низких частот.

Выход фильтра низких частот можно рассматривать в качестве самостоятельного источника сигналов. При использовании идеального источника напряжения переменного тока (с нулевым импедансом) фильтр со стороны выхода низких частот имеет сопротивление R (при расчетах полных сопротивлений идеальный источник сигналов можно заменить коротким замыканием, т.е. его нулевым импедансом для малого сигнала). В выходном импедансе фильтра преобладает емкостная составляюшая. и на высоких частотах он становится равным нулю. Для входного сигнала фильтр представляет собой нагрузку, состоящую на низких частотах из сопротивления R и сопротивления нагрузки, а на высоких частотах - нагрузку, равную просто сопротивлению R.

Рис. 1.60. Фазочастотная и амплитудно-частотная характеристики фильтра низких частот, изображенные в логарифмическом масштабе. В точке 3 дБ фазовый сдвиг составляет 45° и в пределах декады изменения частоты лежит в пределах 6° от асимптотическою значения.

На рис. 1.60 изображена также частотная характеристика фильтра низких частот, но в более общепринятом виде-для вертикальной и горизонтальной осей использован логарифмический масштаб. Можно считать, что по вертикальной оси откладываются децибелы, а по горизонтальной - октавы (или декады). На таком графике равные расстояния соответствуют равным отношениям величин. В виде графика изображен также фазовый сдвиг, при этом для вертикальной оси (градусы) использован линейный масштаб, а для оси частот-логарифмический. Такой график удобен для анализа частотной характеристики даже в случае значительной аттенюации (справа): целый ряд таких графиков представлен в гл. 5, посвященной изучению активных фильтров. Отметим, что при значительной аттенюации изображенная на графике кривая вырождается в прямую линию с наклоном -20 дБ/декада (инженеры предпочитают выражение « -6 дБ/октава»). Отметим также, что фазовый сдвиг плавно изменяется от 0° (на частотах ниже точки перегиба) до 90° (на частотах существенно выше точки перегиба), а в точке -3 дБ составляет 45°. Практическое правило для односекционных RС - фильтров говорит о том. что фазовый сдвиг составляет ≈6° от асимптот в точках 0.1ƒ3дБ и 10ƒ3дБ.

Упражнение 1.22. Докажите последнее утверждение.

Возникает интересный вопрос: можно ли сделать фильтр с какой-либо другой заданной амплитудной характеристикой и какой-либо другой заданной фазовой характеристикой. Пусть вас это не удивляет, но ответить можно только отрицательно - нельзя. Фазовая и амплитудная характеристики для всех возможных фильтров подчиняются законам причинной связи (т.е. характеристика является следствием определенных свойств, но не их причиной).

Частотные характеристики дифференцирующих и интегрирующих RС - цепей. Схема дифференцирующей RС - цепи, которую мы рассмотрели, имеет такой же вид, как и схема фильтра высоких частот, приведенная в настоящем разделе. Чем же считать такую схему, зависит от того, что вас больше интересует: преобразование сигналов во времени или частотная характеристика. Полученное ранее временное условие правильной работы схемы (Uвых « Uвх) можно сформулировать иначе, применительно к частотной характеристике: для того чтобы выходной сигнал был небольшим по сравнению с входным, частота должна быть значительно ниже, чем в точке -3 дБ. В этом легко убедиться. Допустим, что входной сигнал равен Uвх = sinωt. Воспользуемся уравнением, которое мы получили ранее для выхода дифференциатора:

Uвх = RC d/dt sinωt = ωRCcosωt.

Отсюда Uвых « Uвх, если ωRC « 1, т.е. RC « 1/ω. Если входной сигнал содержит некоторый диапазон частот, то условие должно выполняться для самых высоких частот входного диапазона.

Схема интегрирующей RC - цепи имеет такой же вид, как и схема фильтра низких частот: аналогично в хорошем интеграторе самые низкие частоты входного сигнала должны существенно превышать частоту в точке -ЗдБ.

Индуктивности и конденсаторы. Индуктивности, также как и конденсаторы, в сочетании с резисторами образуют схемы фильтров низких (или высоких) частот. Однако на практике RL - фильтры низких и высоких частот встречаются редко. Это связано с тем, что индуктивности более громоздки и дороги, а работают хуже, чем конденсаторы (их характеристики более существенно отличаются от идеальных). Если есть возможность выбора, то предпочтение лучше отдать конденсатору. Исключением из этой общей рекомендации являются ферритовые бусины (маленькие торроидальные сердечники) и дроссели в высокочастотных схемах. Несколько бусин нанизывают на провод, благодаря этому соединение, выполненное с помощью провода, становится в некоторой степени индуктивным; импеданс на высоких частотах увеличивается и предотвращает «колебания» в схеме, при этом в отличие от RС - фильтра активное сопротивление схемы не увеличивается. Радиочастотный дроссель - это катушка, состоящая из нескольких витков провода и ферритового сердечника и используемая с той же целью в радиочастотных схемах.