
- •1.Класифікація методів електророзвідки на постійному струмі.
- •2. Кількісна характеристика локальних гравітаційних аномалій для тіл правильної геометричної форми.
- •Кількісна інтерпретація гравіметричних даних.
- •3. Гамма-гамма метод ( густинний варіант – ггм-г).
- •1. Варіації магнітного поля. Їх природа та методика врахування при магнітних зйомках.
- •2. Блок – схема радіометрів. Радіометри для інтегральних вимірювань радіоактивності.
- •3. Годографи головних та відбитих хвиль , їх порівняльна характеристика.
- •1. Густина, сила тяжіння і тиск в надрах Землі.
- •2. Метод вертикального електричного зондування, його загальна характеристика та область застосування.
- •3. Обгрунтування вибору типового комплексу гдс для нафтогазових свердловин
- •1. Аналітичне продовження гравітаційних аномалій як один із способів іх трансформації.
- •2. Аерогамма-зйомка. Пішохідний гамма-метод.
- •3. Способи інтерпретації кривих електричного зондування
- •1. Фігура і гравітаційне поле Землі.
- •2. Вертикальне сейсмічне профілювання (всп)
- •3.Детектори радыоактивних випромынювань. Газонаповнены, сцинтиляцыйны, та напыв провыдниковы.
- •1. Застосування методів ядерної геофізики при вирішенні задач пошуків рудних родовищ корисних копалин
- •2. Магнітне поле Землі і його елементи. Природа магнітного поля
- •3. Методи вивчення технічного стану свердловин. Основні задачі що вирішуються цими методами.
- •1. Роль фізико-геологічного моделювання при комплексних геофізичних дослідженнях.
- •Моделі внутрішньої будови Землі за сейсмологічними даними. Сейсмическая модель Земли
- •Методи аналізу і розділення аномальних магнітних полів.
- •Гравітаційне поле Землі, його основні параметри та властивості.
- •Параметри пористості та насичення, їх фізична та петрофізична сутність.
- •Метод спільної глибинної точки (сгт).
- •1. Радіометричні методи при пошуках, розвідці та розробці родовищ радіоактивних руд і вирішенні інших геологічних задач.
- •2. Повздовжні та поперечні хвилі і особливості їх розповсюдження.
- •3. Методи електричного профілювання.
- •1. Порівняльна характеристика методів кількісної інтерпретації магнітних аномалій
- •2. Принципи цифрової реєстрації сейсмічних коливань
- •3. Гамма-гамма метод та його застосування в геології
- •1. Взаємодія гамма-випромінювання з речовиною г/п
- •2. Сутність акустичного методу дослідження свердловин та задачі, які вирішуються за його даними.
- •3. Якісна геологічна інтерпретація гравітаційних аномалій
- •Магнетизм та електропровідність Землі
- •Годографи відбитих та рефрагованих хвиль у градієнтних середовищах
- •Метод природного електричного поля
- •1. Прецесія та нутація осі обертання Землі. Припливний потенціал
- •2. Сучасні методи інтерпретації гравітаційних даних
- •Кількісна інтерпретація гравіметричних даних.
- •3.Особливості умов вимірів при гдс та їх вплив на вибір раціонального комплексу методів.
- •Стационарные нейтронные методы гис
- •2. Основні принципи комплексування геофізичних і геологічних методів дослідження
- •3. Багатохвильова сейсморозвідка
- •1. Магнітні властивості гірських порід і методи їх визначення
- •2. Статичні та кінематичні поправки в сейсорозвідці
- •3. Метод потенціалів викликаної поляризації гірських порід (вп)
- •1.Частотное электромагнитное зондирование.
- •2. Основи геотермії. Основні процеси утворення та переносу тепла в надрах Землі
- •3. Пряма та обернена задачі гравірозвідки, їх особливості
- •Магнітні властивості гірських порід і методи їх визначення
- •2. Принцип Гюйгенса–Френеля, принцип Ферма
- •3. Метод магнітотелуричного зондування
- •1. Намагнічування тіл в магнітному полі і характеристика намагнічування.
- •2. Бокове каротажне зондування (бкз) та боковий каротаж бк. Суть, призначення
- •3. Комплекс геофізичних досліджень при пошуках нафтогазових об’єктів
- •1.Термометрія свердловин та задачі,які нею вирішуються
- •1. Методи телуричних струмів та магнітотелуричного профілювання.
- •2. Розв’язання прямих і обернених задач в магніторозвідці для тіл простої геометричної форми
- •1. Методика магнітометричних досліджень при вирешенні геологічних задач на суші і на морі
- •2. Основні теорії походження Сонячної системи і Землі
- •3. Методи високочастотної електрометрії
- •1. Фотонейтронний (гамма-нейтронний) метод в ядерній геофізиці
- •2. Застосування методу осереднення при аналізі гравімагнітних спостережень
- •3. Застосування 3d сейсморозвідки для вирішення геологічних задач
- •1.Функція комплексного показника та її використання при геофізичних дослідженнях.
- •2. Методика та апаратура магнітотелуричних досліджень.
- •10.Методика польових магнітометричних досліджень.
- •3. Теорія методу самочинної поляризації гірських порід (пс). Методика та область застосування. Задачі, що вирішуються методом пс.
1. Застосування методів ядерної геофізики при вирішенні задач пошуків рудних родовищ корисних копалин
Під ядерно-фізичними методами (ЯФМ) розвідки розуміють сукупність прямих методів оцінки складу хімічних елементів і фізичних властивостей порід і мінералів на основі використання штучних джерел іонізуючих випромінювань. За своєю суттю та за положенням вони є частиною геофізичних методів розвідки і органічно входять в геологорозвідувальне виробництво.
Великі перспективи ЯФМ мають для оперативного опробування родовищ без відбору проб, а також для дистанційного контролю за вмістом тих або інших елементів при технічній переробці мінеральної сировини, що складає передумови для автоматизації цих процесів.
ЯФМ поділяються на дві основні групи:
групу гамма-методів, основаних на використанні джерел -випромінювання і випромінювання -полів;
групу нейтронних методів, в яких вивчають поля нейтронів або зв’язане з нейтронним полем -випромінювання. В цій групі використовуються джерела нейтронів.
Наведені вище ядерно-фізичні методи з успіхом застосовуються не тільки у науково-дослідних, лабораторно-аналітичних і каротажних дослідженнях але і в практиці польових пошукових робіт, особливо при пошуках геохімічних аномалій, ореолів і потоків розсіювання рудних родовищ, зокрема – рідкіснометалевих. До цих методів відносяться: нейтронно-активаційний, фотонейтронний, нейтронно-абсорбційний, рентгенорадіометричний методи.
Нейтронно-активаційний фторометричний метод пошуків заснований на використанні реакції нейтронів з енергією 36 МеВ з ядрами 19F, в наслідок якої утворюється ізотоп 16N: 16F(n,)16N. Перетин цієї реакції 0,15 барна. Ізотоп 16N випромінює гамма-кванти з енергією 6,14 МеВ із періодом напіврозпаду 7,3 с і перетворюється у стабільний ізотоп 16О. Індикація фтору здійснюється завдяки реєстрації гамма-квантів з наведеною енергією.
Фтор є індикаторним елементом багатьох цінних металів, завдяки створенню з ними з’єднань. Його активність проявляється, перш за все, завдяки високій окислювальній здатності. Крім того, іони фтору здатні заміщувати іони гідроксила в кристалічних гратках багатьох мінералів. Важливим також є його здатність до утворення комплексних сполук у цілому ряді природних процесів. Це стосується халькофільних (Сu, Zn, Hg, і ін), а також рідкісних елементів (Zr, Nb, Ta, Mo, W, U, рідкісні землі). Характерна значна стійкість багатьох комплексних з’єднань фтору в розчинах, в умовах високих температур (гідротерми, магматичні утворення). Все це створює сприятливі умови для створення навколо рудопроявів багатьох родовищ корисних копалин ореолів розсіювання фтору і інших рудоутворюючих елементів.
Пошукові роботи методом нейтронно-активаційних вимірювань здійснюються за точковими замірам. На кожній точці спочатку вимірюється фонове значення гамма-поля (Іф). Потім до земної поверхні прикладається джерело нейтронів (полоній-берілієве з активністю 510 Ки) і проводиться активація породи протягом 30 с. Потім джерело забирають і проводиться вимір активності Іа=І–Іф протягом 15 с польовим гамма-спектрометром типа СП-3 або СП-4. Вміст фтору за даними вимірів пропорційний Іа і визначається з наслідків еталонування . В межах 0,055 % між вмістом F і Іа існує лінійна залежність. Таким чином, на кожній точці виконується наступна послідовність операцій: 30 с – опромінювання, 5 с – пауза, 15 с – вимір. Проводять 2-3 заміри. Поріг чутливості дорівнює 0,05 % F, тобто нижче кларку (0,066 %).
Польова нейтронно-активаційна фторометрія може застосовуватися для оцінки перспектив і розбраковки гравітаційних і електрометричних аномалій.
Фотонейтронні берилометричні пошуки. Берилій, як і фтор, є індикаторним елементом для значної кількості, головним чином, рідкіснометалевих корисних копалин, до того ж, він і сам є цінною сировиною. Його концентрація пов’язана з пізніми стадіями магматичної диференціації і з постмагматичними процесами. Найбільш високі його концентрації характерні для родовищ пегматитового типу. Крім того, до промислових відносяться також деякі метасоматичні і гідротермальні родовища. При цьому для кожного генетичного типу родовищ характерні специфічні асоціації з різними хімічними елементами. Так, для пегматитів - з Li, Cs, Nb, Ta, U, Th, Zr, з рідкіснометалевими елементами, в грейзенах – з W, Sn, в скарнах – з Mo, W, Cu, Zn, Pb. Ці елементи, як і берилій, створюють навколо родовищ значні ореоли розсіювання, що дозволяє використовувати їх, як індикатори глибокозалягаючих родовищ. Особливо це стосується берилія. Можливість його індикації на рівні нижчекларкового вмісту за допомогою ядерно-фізичного метода заснована, по-перше, на його моноізотопному характері (9Ве), а по-друге, на пороговій енергії зв’язку одного з нейтронів з ядром (1,67 МеВ). Завдяки цьому, під дією гамма-квантів з енергією вище порогової відбувається розщеплення ядра 9Ве із випромінюванням нейтрона (фотонейтронна реакція, або ядерний фотоефект). Енергія цих нейтронів 0,02 МеВ. Їх кількість прямо пропорційна щільності потоку гамма-квантів і вмісту берилію у породі чи мінералі Nn=KСве, де К – коефіцієнт, який визначається експериментально, як кількість імпульсів, що реєструються за 1 хв. від вмісту Ве в 1 %.
Джерелом гамма-квантів слугує 124Sb, датчиком – реєстратор нейтронів. Поріг чутливості біля 0,001 %. Існують польові, лабораторні, автомобільні, свердловинні берилометри.
Рентгенорадіометричний метод. Метод набув досить широкого поширення при пошукових і розвідочних роботах завдяки можливості здійснювати експресне вивчення широкого кола хімічних елементів безпосередньо в умовах природного залягання порід і руд.
Він заснований на збудженні і вимірі флюорисцентного рентгенівського випромінювання К-або L-ліній хімічних елементів в наслідок фотопоглинання ними гама-квантів радіоізотопних джерел з енергією, як правило, меншою 150200 кеВ, тобто в енергетичних межах фотоефекта (рис. 5.11).
При взаємодії з гама-квантами атом втрачає свої К- чи L-електорони, що приводить до іонізації цих електронних орбіт. Майже миттєво ці звільнені орбіти заповнюються електронами з більш віддалених від ядра орбіт. При цьому надлишок енергії цього переходу звільняється у вигляді квантованого характеристичного рентгенівського випромінювання. Енергія цих квантованих станів (серій) виключно специфічна для кожного елемента. Якщо їх вивчати за допомогою -спектрометра, то можливо мати уяву про речовинний (елементний) стан об’єкта, який вивчається. Зараз створена портативна високочутлива рентгенівська кристал-дифракційна спектрометрична апаратура типа СПАРК, 12- канальний РКР-2, УДД і ін.
Рисунок 5.11 - Блок-схема вимірювання при рентгенорадіометричному аналізі
1 – -випромінювання; 2 – приймач-аналізатор; 3 – сцинтиляційний спектрометр; 4 – вторинне характеристичне випромінювання; 5 – проба; 6 - свинцевий екран; Д – джерело збудження