
- •1.1 Синтез за допомогою шаблонів
- •1.2 Вирощування нанодротів за допомогою шаблонів та інжекцією під тиском
- •1.3 Електрохімічне нанесення
- •1.4 Нанесення з парової фази
- •1.5 Синтез нанодротів з використанням шаблонів і в якості шаблонів
- •1.6 Методика вирощування кремнієвий нанодротів
- •1.7 Секрети прк-росту кремнієвих нанопроволок
1.7 Секрети прк-росту кремнієвих нанопроволок
Синтез напівпровідникових нанодротів по механізму пара-рідина-кристал (ПРК) є одним з основних способів отримання монокристалічних нановолосків, які потім використовуються для побудови різних пристроїв в рамках технологічного напряму "знизу-вгору" ("bottom-up"). У переважній більшості робіт процеси зростання нанодротів і дослідження синтезованого продукту рознесені у просторі та часі, що істотно обмежує можливість отримання надійної кількісної інформації про ПРК механізмі, а деякі важливі деталі можуть взагалі залишитися непоміченими. Тому винятковий інтерес представляють методики, що дозволяють вести спостереження за формуванням нанодротів безпосередньо в процесі їх зростання. Саме такий підхід був реалізований в недавніх роботах групи учених з дослідницького центру IBM (Yorktown Heights). Вивчали класичну систему Si-Au, а вирощування нанопроволок проводили в надвисоковакуумному електронному мікроскопі (Hitachi UHV H-9000), що просвічує, або в камері мікроскопа на повільних електронах (LEEM) шляхом експозиції підкладки Si(111) з двома моношарами золота в суміші дисилан (20%) -гелій (80%) при тиску 5х10-4Торр і температурі 600оС [7].
Спостереження в LEEM показали, що нагріваючи плівки Au до 600оС приводить до утворення ансамблю різнорозмірних нанокрапель, а поверхня між краплями володіє надструктурою, характерною для грані Si(111) з одним моношаром золота. Опинилося далі, що при даній температурі атоми Au швидко мігрують по такій поверхні з малих крапель в більші і цей процес (так зване "оствальдовское дозрівання") відбувається за 2-3 хвилини. Аналогічну надструктуру спостерігали і на поверхні підкладки між нанодротами, що ростуть. Тому резонно припустити, що і бічна поверхня нанодротів покрита приблизно одним моношаром Au. Але якщо це так, то у міру зростання дротів розмір краплі на її вершині повинен зменшуватися, оскільки атоми витрачаються на "золочення" бічної поверхні. При цьому діаметр дроту безперервно убуватиме аж до повного припинення зростання, коли витратилося все золото з краплі. Ясно також, що чим менше діаметр початкової краплі, тим раніше це відбудеться. Вказаний ефект виразно спостерігався в експериментах американських фізиків. Що виросли дроту були не циліндровими, а конусоподібними, причому найтонші (у підстави) конуси мали меншу висоту і краплі на їх вершинах відсутні. Таким чином, скільки завгодно довгий нанодріт з краплі даного розміру виростити неможливо.
Рис. 1.6. Фотографія нанодроту кремнію з золотою шапочкою
Але найчудовіший ефект полягає в тому, що атоми золота здатні мігрувати з малих крапель в більші не тільки по плоскій поверхні підкладки (до зростання), але і з вершини одного нанодроту на вершину іншого (розташованою поряд) безпосередньо при зростанні! Результатом такого перетікання є формування пари нанопроволок з протилежною конусністю (рис.1.6, масштабні штрихи - 1мкм). Експерименти insitu в електронному мікроскопі дозволили детально досліджувати кінетику процесу - три знімки на рис. 3 показують зменшення розміру краплі "В" при одночасному збільшенні краплі "А" на сусідньому нанодроті (цифри – час зростання в секундах, масштабний штрих – 50нм). При цьому було встановлено, що швидкість аксіального росту конусовидного нанодроту не залежить від розміру краплі (не рахуючи останньої ділянки швидкого скруглення). Автори пов'язують це з тим, що в їх експериментах лімітуючою стадією є необоротне розкладання молекули дисилану на поверхні рідкої евтектичної краплі [8].
Рис. 1.7. Знімки електронного мікроскопа нанодротів в процесі росту
Отже, епітаксіальне ПРК-ріст кремнієвих нанодротів в дуже чистих умовах натрапляє на фундаментальні обмеження, обумовлені високою міграційною здатністю атомів Au. Разом з тим відомо, що при звичайній газофазній епітаксії дроту ростуть циліндровими, а золото на їх бічних поверхнях відсутнє. Мабуть, навіть невеликі кількостей кисню в ростовій атмосфері достатньо, щоб ефективно блокувати пересування атомів золота по поверхні. Виходить, що для успішного синтезу нанопроволок технологічна система повинна бути чистою, але не занадто [9].
Конденсація з газової фази(піроліз)
у даному методі використовуються молекули типу силану SiH4, які дисоціовані і здатні до конденсації (як краплі дощу з газу):
не монодесперсні частинки,
низький вихід,
важко зібрати,
необхідне покриття для захисту від токсичного впливу (спалювання, термічний розклад, мікрохвильова плазма, випаровування газу або хімічне осадження з газової фази(CVD).
Іонна конденсація в матриці
поміщають зразок кремнію в стакан та обпалюють, при високих температурах атоми конденсату входять у імплантовані зразки.
Рідинофазова конденсація
піроліз в рідкій фазі:
Не монодисперсне заміщення (щоб припинити процес заміщення перестають вводити реагент).
Органічне покриття використовують для контролю розмірів наночасточок, підчас їх синтезу.
Аналітична іонна сіль SiX4 (X= Cl, Br), що використовується, як відновник диспергується в безводних розчиниках в присутності LiAlH4.
Твердофазна дисперсія
лазерна обробка (мікроскопічні вибухи), що спрямовані на подрібнення пластин кремнію до нанорозмірних:
Важковідтворюванний метод,
частинки не монодисперсні,
потрібне покриття для захисту,
ефективна робота лазера.