Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Posobie_chast_3-1.doc
Скачиваний:
1
Добавлен:
01.05.2025
Размер:
1.03 Mб
Скачать

3.1.2 Частотный спектр периодического сигнала

Периодический сигнал S(t) изменяется непрерывно и имеет период Т0 повторения значений (рисунок 3.2). Такой сигнал может быть представлен бесконечной суммой гармонических колебаний:

(3.1)

Рисунок 3.2 - Периодический сигнал

В выражении (3.1) а0 представляет собой постоянную составляющую сигнала, принимающую среднее значение сигнала за период. Это может быть постоянный ток или постоянное напряжение. Затем следуют две составляющие с частотой:

. (3.2)

Эту частоту называют основной. Две следующих составляющих имеют частоту, равную удвоенной основной частоте, их называют вторыми гармониками. В общем случае ряд повторяется до бесконечности и частоты составляющих сигнала будут отличаться от основной частоты во все большее число раз, то есть появятся третья, четвертая и другие гармоники.

Приведенный ряд (3.1) можно представить в компактном виде:

, (3.3)

где k – номер гармонической составляющей, аk , bk – амплитуды k–гармоники. Такое разложение периодической функции времени называется рядом Фурье.

Амплитуды и начальные фазы любой гармоники определяются следующими выражении:

, ; (3.4)

Если ввести такие характеристики как общую амплитуду и начальную фазу k – гармоник, то ряд Фурье можно записать в виде:

, где

,

. (3.5)

Не все физические величины можно оценить одним числом. Например, напряжение на участках цепи переменного тока одной частоты могут отличаться по амплитуде и по фазе, т.е. для характеристики каждого из них необходимо как минимум два числа a и b. Для этого используется комплексное представление сигнала.

Представим ряд Фурье в комплексной форме, заменяя тригонометрические функции показательными. Для замены тригонометрических функций показательными используются формулы Эйлера:

; , (3.6)

и обратные формулы Эйлера:

; . (3.7)

Подставив (3.6) в (3.3) и с учетом 1/j = –j, получим:

(3.8)

Обозначим:

. (3.9)

Тогда с учетом (3.4) и (3.7) составляющие амплитуды примут вид:

. (3.10)

Аналогично: . Заметим, что выражение для Ck отличается от C-k: лишь знаком перед мнимой частью. Вводя отрицательные значения k, с учетом (3.10) ряд Фурье (3.8) примет вид:

(3.11)

В этом выражении присутствует среднее значение функции S(t) или постоянная составляющая сигнала . Используя выражение (3.4) для составляющих амплитуды, будем иметь:

.

Объединив обе суммы в выражении (3.11), получим комплексную форму записи ряда Фурье:

, (3.12)

где Сk –комплексные амплитуды гармоник:

(3.13)

Таким образом ряд Фурье показывает, что периодическая функция времени S(t) может быть представлена не только своими мгновенными значениями, но также и своими гармоническими составляющими c частотами, кратными основной частоте.

Пример представления периодического сигнала спектральными гармоническими составляющими представлен на рисунке 3.3:

Временное представление последовательности прямоугольных импульсов с периодом Т0

Спектральное представление функции, где – огибающая модуля спектра последовательности прямоугольных импульсов.

Рисунок 3.3 – Частотный спектр периодического сигнала

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]