- •1. Розвиток та сучасний стан електропостачальних систем
- •1.1. Відомості з історії розвитку електропостачання
- •1.2. Задача електропостачальних систем. Основні вимоги та визначення
- •1.3. Проблеми електропостачання
- •1.4. Структура та функційні складові сучасних електропостачальних систем
- •1.5. Джерела живлення електропостачальних систем підприємств
- •1.6. Особливості ліній електропередачі та підстанцій електропостачальних систем
- •1.7. Принципи аналізу електропостачальних систем
- •1.7.1. Особливості електричних розрахунків електропостачальних систем
- •1.7.2. Принципові, розрахункові та заступні схеми
- •1.7.3. Векторна діаграма та електричні розрахунки ділянки електричної мережі
- •2. Електричні навантаження
- •2.1. Споживачі та приймачі електричної енергії
- •2.2. Структура електроспоживання
- •2.3. Класифікація приймачів електричної енергії
- •2.4. Загальна характеристика приймачів електричної енергії
- •2.5. Графіки електричного навантаження
- •2.6. Величини та коефіцієнти, що характеризують графіки навантажень
- •2.7. Методи визначення розрахункових навантажень
- •2.7.1. Класифікація та загальна характеристика методів
- •2.7.3. Метод коефіцієнта попиту
- •2.7.4. Метод питомих витрат електроенергії
- •2.7.5. Метод питомого навантаження
- •2.7.6. Метод упорядкованих діаграм
- •2.7.7. Статистичний метод
- •2.8. Послідовність визначення розрахункових навантажень
- •2.9. Визначення пікових навантажень
- •3. Реактивна потужність в електропостачальних системах
- •3.1. Поняття реактивної потужності
- •3.2. Споживання та генерування реактивної потужності
- •3.3. Реактивна потужність в електричній мережі
- •3.4. Негативні явища, пов’язані з передачею реактивної потужності
- •3.5. Заходи щодо зменшення споживання реактивної потужності
- •3.6. Класифікація компенсувальних пристроїв
- •3.6.1. Синхронні компенсатори та синхронні двигуни
- •3.6.2. Шунтові конденсаторні батареї та реактори
- •3.7. Статичні компенсатори прямого регулювання
- •3.7.1. Регулювання зміною опору
- •3.7.2. Регулювання зміною струму
- •3.7.3. Регулювання зміною напруги
- •3.7.4. Регулювання зміною частоти
- •3.8. Статичні компенсатори непрямого регулювання
- •3.8.1. Статичні компенсатори з реакторами, керованими вентилями
- •3.8.2. Статичні компенсатори з керованими реакторами
- •3.8.3. Статичні компенсатори з параметричним регулюванням
- •3.8.4. Комбіновані статичні компенсатори
- •3.9. Розподіл компенсувальних пристроїв в мережах
- •3.9.1. Розподіл конденсаторів в радіальній мережі
- •3.9.2. Розподіл конденсаторів в магістральній мережі
- •3.9.3. Розподіл конденсаторів в мережі двох напруг
- •3.9.4. Використання синхронних двигунів для компенсації реактивної потужності
- •3.9.5. Оптимізація місця приєднання конденсаторної батареї до струмопроводу з рівномірно розподіленим навантаженням
- •3.9.6. Баланс реактивної потужності та забезпечення вимог постачальної системи в різних режимах
- •3.10. Схеми та обладнання конденсаторних установок
- •3.10.1. Схеми та обладнання конденсаторних установок нн
- •3.10.2. Схеми та обладнання конденсаторних установок напругою 6(10) кВ
- •3.10.3. Розряд конденсаторних установок
- •3.11. Плата за реактивну потужність
- •4 Якість електричної енергії в електропостачальних системах
- •4.1. Загальні засади
- •4.3.2. Коливання напруги
- •- Розмахом зміни напруги, - дозою флікера.
- •4.3.3. Несинусоїдність напруги
- •4.3.7. Імпульс напруги
- •4.3.8. Тимчасова перенапруга
- •4.4. Способи розрахунку та методики визначення показників якості електроенергії
- •4.4.1. Розрахунок відхилень напруги
- •Визначати u1(1) і методом симетричних складових;
- •Визначати u1(1) і за наближеною формулою
- •4.4.2. Розрахунок коливань напруги
- •4.4.3. Розрахунок несинусоїдності напруги
- •4.4.4. Розрахунок несиметрії напруг
- •Розраховувати u2(1)і за методом симетричних складових;
- •Розраховувати u2(1)і за наближеною формулою
- •4.4.5. Розрахунок відхилення частоти
- •4.4.7. Розрахунок імпульсів напруги
- •Електроприймачі, на роботу яких зміна частоти практично не впливає. До них відносяться освітлення, значна частина електротермічного обладнання, електролізні і електрозварювальні установки тощо.
- •Споживачі, продуктивність механізмів яких змінюється пропорційно другого, третього і більш високого ступеню частоти: вентилятори, відцентрові помпи, турбокомпресори тощо.
- •4.6. Нормалізація та регулювання показників якості електроенергії
- •4.6.1. Регулювання частоти
- •4.6.2. Регулювання напруги
- •4.6.3. Зменшення коливань напруги
- •4.6.4. Зменшення рівня вищих гармонік
- •4.6.5. Симетрування навантажень
- •5. Схеми та обладнання електропостачальних мереж напругою понад 1000 в
- •5.1. Класифікація мереж електропостачальних систем.
- •5.2. Підстанції мереж електропостачальних систем
- •5.2.1. Головні понижувальні підстанції
- •5.2.2. Розподільні пункти
- •5.2.3. Цехові та розподільні підстанції
- •5.3. Схеми мереж зовнішнього електропостачання
- •5.3.1. Схеми мереж зовнішнього електропостачання промислових підприємств
- •5.3.2. Схеми мереж зовнішнього електропостачання електрифікованих залізниць
- •5.3.3. Схеми мереж зовнішнього електропостачання міст
- •5.3.4. Схеми зовнішнього електропостачання в сільський місцевості
- •5.4. Мережі внутрішнього розподілу електроенергії на напрузі більше 1000 в
- •5.4.1. Радіальні схеми розподільних мереж
- •5.4.2. Магістральні схеми розподільних мереж
- •5.4.3. Комплексні схеми розподільних мереж
- •6. Розподільні мережі напругою нижче 1000 в
- •6.1. Системи мереж низької напруги
- •6.2. Схеми та конструктивне виконання мереж нн
- •6.2.1. Класифікація
- •6.2.2. Схеми та конструкції мереж нн
- •6.2.3. Схеми первинних з’єднань систем вводу резерву
- •6.3. Комутаційні та захисні апарати нн
- •6.3.1. Вимикачі навантаження
- •6.3.2. Силові запобіжники
- •6.3.3. Автоматичні вимикачі
- •100 До 630 а та термічного й електронного розчіплювачів
- •6.3.4. Пристрої захисного вимкнення
- •6.3.5. Пристрої захисту від перенапруг
- •6.3.6. Магнітні пускачі та контактори
- •6.4. Обмеження струмів короткого замикання в мережах нн
- •6.5. Принципи вибору апаратів та струмопровідних частин нн
- •6.5.1. Вибір обладнання за умовами тривалого нормального режиму
- •6.5.2. Перевірка за умовами тимчасових режимів (післяаварійних)
- •6.5.3. Перевірка за умовами аварійних режимів
- •6.5.4. Перевірка перерізу провідників за умовами пуску
- •6.5.5. Вибір контакторів
- •6.5.6. Вибір запобіжників
- •6.6. Розподільні пристрої мереж низької напруги
- •7. Розрахунки мереж електропостачальних систем
- •7.1. Мета та особливості електричних розрахунків мереж електропостачальних систем
- •7.2. Принципи аналізу мереж за втратами напруги
- •7.3. Розрахунок втрат напруги та перерізів проводів в лініях постійного струму та двопровідних освітлювальних лініях змінного струму
- •7.4. Випадки розрахунку мереж напругою менше 1000 в
- •7.4.1. Розрахунок мереж без врахування індуктивних опорів
- •7.4.2. Розрахунок ліній з рівномірно розподіленим навантаженням
- •7.4.3. Розрахунок неповнофазних мереж нн
- •7.4.4. Особливості розрахунку трифазної мережі з рівномірно розподіленими однофазними навантаженнями
- •7.5. Аналіз трифазної мережі сн/нн з симетричним навантаженням за відхиленнями напруги
- •7.6.Визначення положення рпн трансформаторів
- •Список посилань
6.3.6. Магнітні пускачі та контактори
Магнітні пускачі та контактори (далі–контактори) призначені для керування технологічним обладнанням, у першу чергу двигунами, також для оперативних комутацій окремих ланок невеликої потужності мережі електропостачання, які вимагають дистанційного чи автоматизованого керування. Вони відрізняються тим, що їх контактна система розрахована на значно більшу кількість комутацій, ніж у автоматичних вимикачів. Зазвичай їх використовують разом із запобіжниками, які захищають приєднання від коротких замикань, а для захисту від перевантажень застосовують спеціальне теплове реле. Широкого застосування набувають схеми з використанням контакторів разом з автоматичними вимикачами, а для двигунів невеликої потужності – комбінованих апаратів (автоматичний вимикач - контактор). Умовні позначення контакторів показані на рис.6.16,м.
Конструкція контактора складається з нерухомої та рухомої частин осердя, контактів (головних та допоміжних), механічно пов’язаних з рухомою частиною, та котушки керування. Якщо на котушку подати напругу, рухома частина осердя, долаючи зусилля пружини, притягується до нерухомої, контактор спрацьовує й залишається в цьому стані, поки котушка є під напругою. Для вимкнення контактора достатньо розімкнути коло котушки чи зменшити напругу її живлення, під дією пружини контактор перейде в первинний стан. Основними недоліками контакторів можна вважати необхідність неперервного протікання струму через котушку, значна вага рухомих частин. Для подолання першого із зазначених недоліків виробники розробили контактори із защіпкою, яка тримає рухому частину притягнутою після спрацювання, але для розмикання контактора на іншу котушку необхідно подати відповідну напругу, щоб вивільнити защіпку; контактор у такому випадку втрачає функцію реле мінімальної напруги.
Контактори характеризують наступними параметрами:
номінальна напруга;
номінальний струм;
номінальна напруга котушки керування;
кількість робочих циклів.
Для контакторів випускають різного роду аксесуари: додаткові контакти, у тому числі з витримками часу; механічне блокування для схем реверсу та АВР, з’єднувальні шинки тощо.
Схеми приєднання двигунів наведені на рис.6.24. Для двигунів невеликої потужності можна застосувати приєднання через автоматичний вимикач з захисною характеристикою типу D (рис.6.24,а). В колах живлення двигунів з частими пусками застосовують контактори з тепловими реле, які забезпечують захист від перевантажень, а захист від коротких замикань забезпечують запобіжники або електромагнітні елементи розчіплювачів автоматів з характеристикою типу МА (Івідс.=12Ін) (рис.6.24,б,в).
а) б) в) г)
Рис.6.24. Схеми приєднання двигунів: а)через автоматичний вимикач із захисною характеристикою типу D; б) через автоматичний вимикач із захисною характеристикою типу МА, контактор та теплове реле; в) через вимикач навантаження із запобіжником та контактор з тепловим реле; г) через автоматичний вимикач з електронним розчіплювачем з регульованою захисною характеристикою для захисту двигунів та контактором.
Для двигунів відносно великої потужності (зі струмами понад 100 А), застосовують схему приєднання, захисту й керування зі спеціальними електронними розчіплювачами, призначеними саме для захисту асинхронних двигунів. Характеристика такого розчіплювача, на відміну від звичайного, має продовжену обернено залежну частину з можливістю її регулювання. Необхідність в застосуванні теплового реле відпадає (рис.6.24,г).
