- •1. Розвиток та сучасний стан електропостачальних систем
- •1.1. Відомості з історії розвитку електропостачання
- •1.2. Задача електропостачальних систем. Основні вимоги та визначення
- •1.3. Проблеми електропостачання
- •1.4. Структура та функційні складові сучасних електропостачальних систем
- •1.5. Джерела живлення електропостачальних систем підприємств
- •1.6. Особливості ліній електропередачі та підстанцій електропостачальних систем
- •1.7. Принципи аналізу електропостачальних систем
- •1.7.1. Особливості електричних розрахунків електропостачальних систем
- •1.7.2. Принципові, розрахункові та заступні схеми
- •1.7.3. Векторна діаграма та електричні розрахунки ділянки електричної мережі
- •2. Електричні навантаження
- •2.1. Споживачі та приймачі електричної енергії
- •2.2. Структура електроспоживання
- •2.3. Класифікація приймачів електричної енергії
- •2.4. Загальна характеристика приймачів електричної енергії
- •2.5. Графіки електричного навантаження
- •2.6. Величини та коефіцієнти, що характеризують графіки навантажень
- •2.7. Методи визначення розрахункових навантажень
- •2.7.1. Класифікація та загальна характеристика методів
- •2.7.3. Метод коефіцієнта попиту
- •2.7.4. Метод питомих витрат електроенергії
- •2.7.5. Метод питомого навантаження
- •2.7.6. Метод упорядкованих діаграм
- •2.7.7. Статистичний метод
- •2.8. Послідовність визначення розрахункових навантажень
- •2.9. Визначення пікових навантажень
- •3. Реактивна потужність в електропостачальних системах
- •3.1. Поняття реактивної потужності
- •3.2. Споживання та генерування реактивної потужності
- •3.3. Реактивна потужність в електричній мережі
- •3.4. Негативні явища, пов’язані з передачею реактивної потужності
- •3.5. Заходи щодо зменшення споживання реактивної потужності
- •3.6. Класифікація компенсувальних пристроїв
- •3.6.1. Синхронні компенсатори та синхронні двигуни
- •3.6.2. Шунтові конденсаторні батареї та реактори
- •3.7. Статичні компенсатори прямого регулювання
- •3.7.1. Регулювання зміною опору
- •3.7.2. Регулювання зміною струму
- •3.7.3. Регулювання зміною напруги
- •3.7.4. Регулювання зміною частоти
- •3.8. Статичні компенсатори непрямого регулювання
- •3.8.1. Статичні компенсатори з реакторами, керованими вентилями
- •3.8.2. Статичні компенсатори з керованими реакторами
- •3.8.3. Статичні компенсатори з параметричним регулюванням
- •3.8.4. Комбіновані статичні компенсатори
- •3.9. Розподіл компенсувальних пристроїв в мережах
- •3.9.1. Розподіл конденсаторів в радіальній мережі
- •3.9.2. Розподіл конденсаторів в магістральній мережі
- •3.9.3. Розподіл конденсаторів в мережі двох напруг
- •3.9.4. Використання синхронних двигунів для компенсації реактивної потужності
- •3.9.5. Оптимізація місця приєднання конденсаторної батареї до струмопроводу з рівномірно розподіленим навантаженням
- •3.9.6. Баланс реактивної потужності та забезпечення вимог постачальної системи в різних режимах
- •3.10. Схеми та обладнання конденсаторних установок
- •3.10.1. Схеми та обладнання конденсаторних установок нн
- •3.10.2. Схеми та обладнання конденсаторних установок напругою 6(10) кВ
- •3.10.3. Розряд конденсаторних установок
- •3.11. Плата за реактивну потужність
- •4 Якість електричної енергії в електропостачальних системах
- •4.1. Загальні засади
- •4.3.2. Коливання напруги
- •- Розмахом зміни напруги, - дозою флікера.
- •4.3.3. Несинусоїдність напруги
- •4.3.7. Імпульс напруги
- •4.3.8. Тимчасова перенапруга
- •4.4. Способи розрахунку та методики визначення показників якості електроенергії
- •4.4.1. Розрахунок відхилень напруги
- •Визначати u1(1) і методом симетричних складових;
- •Визначати u1(1) і за наближеною формулою
- •4.4.2. Розрахунок коливань напруги
- •4.4.3. Розрахунок несинусоїдності напруги
- •4.4.4. Розрахунок несиметрії напруг
- •Розраховувати u2(1)і за методом симетричних складових;
- •Розраховувати u2(1)і за наближеною формулою
- •4.4.5. Розрахунок відхилення частоти
- •4.4.7. Розрахунок імпульсів напруги
- •Електроприймачі, на роботу яких зміна частоти практично не впливає. До них відносяться освітлення, значна частина електротермічного обладнання, електролізні і електрозварювальні установки тощо.
- •Споживачі, продуктивність механізмів яких змінюється пропорційно другого, третього і більш високого ступеню частоти: вентилятори, відцентрові помпи, турбокомпресори тощо.
- •4.6. Нормалізація та регулювання показників якості електроенергії
- •4.6.1. Регулювання частоти
- •4.6.2. Регулювання напруги
- •4.6.3. Зменшення коливань напруги
- •4.6.4. Зменшення рівня вищих гармонік
- •4.6.5. Симетрування навантажень
- •5. Схеми та обладнання електропостачальних мереж напругою понад 1000 в
- •5.1. Класифікація мереж електропостачальних систем.
- •5.2. Підстанції мереж електропостачальних систем
- •5.2.1. Головні понижувальні підстанції
- •5.2.2. Розподільні пункти
- •5.2.3. Цехові та розподільні підстанції
- •5.3. Схеми мереж зовнішнього електропостачання
- •5.3.1. Схеми мереж зовнішнього електропостачання промислових підприємств
- •5.3.2. Схеми мереж зовнішнього електропостачання електрифікованих залізниць
- •5.3.3. Схеми мереж зовнішнього електропостачання міст
- •5.3.4. Схеми зовнішнього електропостачання в сільський місцевості
- •5.4. Мережі внутрішнього розподілу електроенергії на напрузі більше 1000 в
- •5.4.1. Радіальні схеми розподільних мереж
- •5.4.2. Магістральні схеми розподільних мереж
- •5.4.3. Комплексні схеми розподільних мереж
- •6. Розподільні мережі напругою нижче 1000 в
- •6.1. Системи мереж низької напруги
- •6.2. Схеми та конструктивне виконання мереж нн
- •6.2.1. Класифікація
- •6.2.2. Схеми та конструкції мереж нн
- •6.2.3. Схеми первинних з’єднань систем вводу резерву
- •6.3. Комутаційні та захисні апарати нн
- •6.3.1. Вимикачі навантаження
- •6.3.2. Силові запобіжники
- •6.3.3. Автоматичні вимикачі
- •100 До 630 а та термічного й електронного розчіплювачів
- •6.3.4. Пристрої захисного вимкнення
- •6.3.5. Пристрої захисту від перенапруг
- •6.3.6. Магнітні пускачі та контактори
- •6.4. Обмеження струмів короткого замикання в мережах нн
- •6.5. Принципи вибору апаратів та струмопровідних частин нн
- •6.5.1. Вибір обладнання за умовами тривалого нормального режиму
- •6.5.2. Перевірка за умовами тимчасових режимів (післяаварійних)
- •6.5.3. Перевірка за умовами аварійних режимів
- •6.5.4. Перевірка перерізу провідників за умовами пуску
- •6.5.5. Вибір контакторів
- •6.5.6. Вибір запобіжників
- •6.6. Розподільні пристрої мереж низької напруги
- •7. Розрахунки мереж електропостачальних систем
- •7.1. Мета та особливості електричних розрахунків мереж електропостачальних систем
- •7.2. Принципи аналізу мереж за втратами напруги
- •7.3. Розрахунок втрат напруги та перерізів проводів в лініях постійного струму та двопровідних освітлювальних лініях змінного струму
- •7.4. Випадки розрахунку мереж напругою менше 1000 в
- •7.4.1. Розрахунок мереж без врахування індуктивних опорів
- •7.4.2. Розрахунок ліній з рівномірно розподіленим навантаженням
- •7.4.3. Розрахунок неповнофазних мереж нн
- •7.4.4. Особливості розрахунку трифазної мережі з рівномірно розподіленими однофазними навантаженнями
- •7.5. Аналіз трифазної мережі сн/нн з симетричним навантаженням за відхиленнями напруги
- •7.6.Визначення положення рпн трансформаторів
- •Список посилань
4.6.5. Симетрування навантажень
Найефективнішим способом симетрування однофазних навантажень є рівномірний розподіл їх між фазами трифазної мережі та забезпечення однакових режимів роботи. Однак цей спосіб неможливо застосувати у випадках наявності одиничних потужних неповнофазних навантажень. Для таких випадків запобігти впливу несиметрії навантаження або значно зменшити його можна за допомогою спеціальних симетрувальних пристроїв.
Найбільш відомими та ефективними схемами симетрування однофазних навантажень є схема Штейнмеца та схема з реактором-подільником.
Рис 4.7. Пристрої симетрування:
а) за схемою Штейметца; б) за схемою з реактором-подільником.
Для
установок з коефіцієнтом потужності
близьким до одиниці (дугові печі непрямої
дії, печі опору) застосовують схему
Штейнмеца, а для установок з коефіцієнтом
потужності до cos
=0,866
рекомендується схема з реактором-подільником.
Для електротехнологічних устав з відносно постійним, малозмінним графіком навантаження (індукційні канальні, індукційні нагрівальні методичної дії, дугові непрямої дії, електрошлакові, опору прямого нагріву) застосовують некеровані пристрої, які встановлюють на стороні вищої напруги пічного трансформатора. Індукційні плавильні тигельні печі та індукційні установки нагріву промислової частоти за умов живлення від трифазних трансформаторів симетрують за допомогою керованих схем на стороні нижчої напруги. Управління пристроєм здійснюють комутацією частини секцій паралельно увімкнених конденсаторів та перемиканням відгалужень реактора.
Симетрування дво- та трифазних несиметричних навантажень з низьким коефіцієнтом потужності можна здійснити за допомогою трифазної конденсаторної батареї.
Розглянемо графоаналітичний метод визначення потужностей однофазних конденсаторів для симетрування напргуи трифазної трипровідної мережі [4.4].
На
рис.4.8 представлена схема ділянки
трипровідної трифазної мережі, до якої
приєднані однофазні навантаження
ab,
bc,
ca,
потужність яких різна. Різними також
будуть струми навантажень
ab,
bc,
ca
та
струми фаз мережі
a,
b,
c.
Струми прямої та оберненої послідовностей
визначаються з виразів:
(4.40)
Рис 4.8. Схема ділянки трифазної мережі трипровідної мережі
Рис 4.9. Визначення умовної потужності S2, пропорційної струму
оберненої послідовності
Якщо
вектор міжфазної напруги
ав
суміщений з дійсною віссю, вираз значення
потужності прямої послідовності можна
записати
,
та вираз умовного значення потужності оберненої послідовності у вигляді
,
де 1 – напруга прямої послідовності.
За умови 2<< 1 можна записати
Скористаємось наступними співвідношеннями:
струми фаз мережі
струми навантажень
міжфазні напруги
Підставимо їх в (4.40) і після перетворювань отримаємо наступні вирази потужностей
(4.41)
Для симетрування параметрів режиму використовуємо однофазні конденсатори пристрою компенсації реактивної потужності з потужністю їх за умов приєднання між фазами мережі - Qab, Qbc, Qca. Вони мають бути розподілені між фазами таким чином, щоб зкомпенсувати струм оберненої послідовності І2 або пропорційну йому умовну потужність S2. При цьому повинна виконуватись умова:
(4.42)
Для
визначення величин Qab
,
Qbc
,
Qca
виконуємо графічну побудову в осях Qbc
,
2·Qab
,
·Qса.
(рис
4.10).
Задаємо
в масштабі величину Q’bc
(відрізок Оa
)
та відкладаємо його на відповідній вісі
координат. Від кінця вектора Q’bc
проводимо лінію паралельно вісі
2·
Qab,
а від кінця вектора 3·
- лінію паралельно вісі
·Qса.
Від точки перетину цих ліній відрізки
ab
та bc
у відповідному масштабі визначають
величину потужностей конденсаторів
Q’ab
,
Q’ca
відповідно.
Рис 4.10. Визначення потужності однофазних
конденсаторів для симетрування режиму.
Якщо змінювати первинну величину Qbc, можна подібним до попереднього випадку чином отримати відповідні величини потужності конденсаторів Qab, Qca. У випадку, коли Q```bc відображене відрізком Of , загальна потужність усіх конденсаторів буде найменшою (Q```K ) за умови необхідного симетрування, причому Q```ab=0. Інакше кажучи, для випадків 1 та 2 додаткова потужність більша від Q```K, розподіляється рівномірно між усіма фазами.
Контрольні запитання до розділу 4:
Для чого необхідно визначати показники якості електроенергії та встановлювати норми?
Які показники якості зазначені згідно ГОСТ-13106-97?
Які норми окремих показників якості визначені чинним стандартом?
Наведіть способи та методики визначення окремих показників якості.
В чому полягає вплив окремих показників якості на режими роботи та показники типових електроприймачів та елементів мережі?
Які способи та заходи застосовують для нормалізації та регулювання окремих показників якості електроенергії?
