- •Эталонная модель взаимодействия открытых систем (эмвос) Основные понятия и определения
- •Определение понятия коммутации. Типы коммутации.
- •1. Коммутация каналов: характерно жесткое занятие линии. В этот же момент узлы коммутации не могут быть задействованы. Недостаток: невозможность исп-я при передаче пульсирующего трафика.
- •3. Коммутация сообщений
- •Преимущества использования открытых систем:
- •Многоуровневые архитектуры связи
- •Иерархическая связь
- •Форматы информации
- •Некоторые организации-источники стандартов
- •Уровни. Краткая характеристика
- •Концепция сетевого взаимодействия. Определение локальной сети. Требования, предъявляемые к компьютерным сетям. Концепция сетевого взаимодействия. Определение локальной сети.
- •3) Расширяемость и масштабируемость:
- •4) Поддержка разных видов трафика:
- •Два типа сетей
- •Все сети подразделяются на два типа:
- •Особенности одноранговых сетей:
- •Методы передачи дискретных данных на физическом уровне
- •При цифровом кодировании дискретной информации используется два класса методов:
- •Требования к методам цифрового кодирования
- •Методы логического кодирования.
- •Существует три класса методов логического кодирования:
- •Общая структура кадров, передаваемых в локальных сетях Кадры бывают трех типов:
- •Структуру кадра подразделяют на три части:
- •Заголовок состоит:
- •Методы обнаружения ошибок
- •Раньше использовались примитивные методы обнаружения ошибок:
- •Европейский стандарт 95г en50173 – он повторяет фактически стандарт tia/eia-568а. Международный стандарт iso11801 – он повторяет фактически стандарт tia/eia-568а и en50173. Структура скс
- •Технические помещения Все технические помещения подразделяются на два типа:
- •Скс включает в себя три подсистемы:
- •1) Подсистема внешних магистралей (первичная):
- •2) Вторичная подсистема (внутренних магистралей, вертикальная):
- •3) Третичная подсистема (горизонтальная):
- •Кабели скс
- •Коаксиальный кабель
- •Плата сетевого адаптера
- •Структура стандартов ieee 802.X(iso 8802-1…)
- •Структура стандартов, представленная комитетами 802.X
- •Протокол llc
- •Типы пакетов llc. Структура пакета llc.
- •Структура пакета llc
- •Формат поля управления
- •Структура поля управления информационного пакета имеет следующий вид:
- •Технология EtherNet
- •Метод доступа csma/cd (многостанционный доступ с контролем несущей и обнаружением коллизий)
- •Время двойного оборота
- •Пример: конфликты по передаче
- •Как улучшить? Минимизировать длину кабеля.
- •Форматы кадров технологии Ethernet
- •Автоматическое распознавание кадра сетевой картой
- •Спецификации физической среды 10Mb EtherNet До 1991 года было разработано 4 основных физических протокола 10-ти мегабитного Ethernet:
- •Достоинства:
- •Недостатки:
- •Достоинства:
- •Недостатки:
- •Концентраторы
- •Факультативные функции концентраторов:
- •4) Многосегментные концентраторы:
- •Методика расчета конфигурации сети Ethernet
- •Расчет времени двойного оборота.
- •Расчет сокращение меж кадрового интервала в повторителях
- •Классическая сеть Token Ring
- •Метод доступа
- •Управление приоритетным доступом
- •Формат информационного кадра
- •Структура контроля кадра:
- •Формат прерывающей последовательности Состоит из двух полей:
- •Все отличия только на физическом уровне. Уровень mac и llc остались без изменения. Т.О., отличия можно показать следующим образом.
- •Mlt3 - неэкранированная витая пара
- •Концентраторы. Дополнительные функции.
- •Технология коммутации кадров в локальных сетях
- •Алгоритм работы прозрачного моста.
- •Ограничения в работе мостов и коммутаторов Проблемы петель в сетях построенных на базе мостов и коммутаторов.
- •Мосты с маршрутизацией от источника
- •Коммутаторы
- •Изменение в работе mac уровня при полнодуплексной работе
- •Проблема управления потоками данных
- •Управление потоками кадров при полудуплексной работе.
- •Характеристики, влияющие на производительность коммутаторов.
- •Дополнительные функции коммутаторов.
- •Сетевой уровень как средство построения составных сетей.
- •Ограничения мостов и коммутаторов
- •Понятие составной сети
- •Принципы маршрутизации
- •Протоколы маршрутизации
- •1) Мосты и коммутаторы оперируют только с mac-адресами (локальными адресами), в то время как маршрутизаторы оперируют с сетевыми адресами
- •Функции маршрутизаторов
- •Общая характеристика стека протоколов tcp/ip
- •Адресация в ip сетях.
- •Классы ip-адресов
- •Особые ip-адреса
- •Использование масок в ip-адресации.
- •Протокол ip
- •Фрагментация ip-пакетов
- •Отображение символьных или доменных имен
- •Маршрутизация с использованием масок
- •Цифровое кодирование
- •Требования к методам цифрового кодирования
- •Потенциальный код без возвращения к нулю (nrz)
- •Потенциальный код c возвратом к нулю (rz)
- •Метод биполярного кодирования с альтернативной инверсией (ami)
- •Потенциальный код с инверсией при единице (nrzi)
- •Биполярный импульсный код
- •Манчестерский код
- •Потенциальные коды 2b1q и pam-5
- •Потенциальный код mlt-3
- •Логическое кодирование
- •Избыточные коды
- •Скремблирование
- •История развития сетевой технологии Ethernet
- •Метод доступа csma/cd
- •Этапы доступа к среде
- •Возникновение коллизии
- •Время двойного оборота и распознавание коллизий
- •Форматы кадров технологии Ethernet
- •Кадр Raw 802.3/Novell 802.3
- •Кадр Ethernet dix/ Ethernet II
- •Кадр Ethernet snap
- •Использование различных типов кадров Ethernet
- •Спецификации физической среды Ethernet
- •Стандарт 10Base-5
- •Стандарт 10Base-2
- •Стандарт 10Base-t
- •Технология Fast Ethernet
- •Физический уровень технологии Fast Ethernet
- •Физический уровень 100Base-fx
- •Физический уровень 100Base-tx
- •Физический уровень 100Base-t4
- •Спецификации физической среды стандарта 802.3z
- •Многомодовый кабель
- •Одномодовый кабель
- •Твинаксиальный кабель
- •Gigabit Ethernet на витой паре категории 5
- •Основные характеристики технологии Token Ring
- •Маркерный метод доступа к разделяемой среде
- •Форматы кадров Token Ring
- •Кадр данных
- •Прерывающая последовательность
- •Приоритетный доступ к кольцу
- •Физический уровень технологии Token Ring
Форматы кадров Token Ring
В Token Ring существует три различных формата кадров:
– маркер;
– кадр данных;
– прерывающая последовательность.
Маркер
Формат кадра маркера показан на рисунке 2. Кадр маркера состоит из трех полей, каждое длиной в один байт.
– Начальный ограничитель (Start Delimiter, SD) появляется в начале маркера, а также в начале любого кадра, проходящего по сети. Поле представляет собой следующую уникальную последовательность символов манчестерского кода: JKOJKOOO. Поэтому начальный ограничитель нельзя спутать ни с какой битовой последовательностью внутри кадра.
– Поле Управление доступом (Access Control, АС) состоит из четырех подполей: РРР, Т, Ми RRR, где РРР - биты приоритета, Т - бит маркера, М - бит монитора, RRR -резервные биты приоритета. Бит Т, установленный в 1, указывает на то, что данный кадр является маркером доступа. Бит монитора устанавливается в 1 активным монитором ив 0 любой другой станцией, передающей маркер или кадр. Если активный монитор видит маркер или кадр, содержащий бит монитора со значением 1, то активный монитор знает, что этот кадр или маркер уже однажды обошел кольцо и не был обработан станциями. Если это кадр, то он удаляется из кольца. Если это маркер, то активный монитор передает его дальше по кольцу. Использование полей приоритетов будет рассмотрено в теме "Приоритетный доступ к кольцу".
– Конечный ограничитель (End Delimeter, ED) - последнее поле маркера. Так же как и поле начального ограничителя, это поле содержит уникальную последовательность манчестерских кодов JK1JK1, а также два однобитовых признака: I и Е. Признак I (Intermediate) показывает, является ли кадр последним в серии кадров (I=0) или промежуточным (I=1). Признак Е (Error) - это признак ошибки. Он устанавливается в 0 станцией-отправителем, и любая станция кольца, через которую проходит кадр, должна установить этот признак в 1, если она обнаружит ошибку по контрольной сумме или другую некорректность кадра.
Кадр данных
Формат кадра данных сетевой технологии Token Ring представлен на рисунке 3.
Кадр данных включает те же три поля; что и маркер, и имеет кроме них еще несколько дополнительных полей. Таким образом, кадр данных состоит из следующих полей:
– начальный ограничитель (Start Delimiter, SD);
– управление доступом (Access Control, AC);
– управление кадром (Frame Control, FC);
– адрес назначения (Destination Address, DA);
– адрес источника (Source Address, SA);
– данные (INFO);
– контрольная сумма (Frame Check Sequence, FCS); - конечный ограничитель (End Delimeter, ED); - статус кадра (Frame Status, FS).
Начальный ограничитель SD аналогичен одноименному полю маркера.
Поле Управление доступом АС аналогично полю АС маркера, бит маркера Т установлен в ноль.
Кадр данных может переносить либо служебные данные для управления кольцом (данные MAC-уровня), либо пользовательские данные (LLC-уровня). Поле Управление кадром FC определяет тип кадра:
FC = 00 - МАС-кадр;
FC = 01 - LLC-кадр.
Стандарт Token Ring определяет 6 типов управляющих кадров MAC-уровня. Если кадр определен как MAC, то поле также указывает, какой из шести типов представлен данным кадром. Назначение этих шести типов кадров описано ниже.
– Чтобы удостовериться, что ее адрес уникальный, станция, когда впервые присоединяется к кольцу, посылает кадр Тест дублирования адреса (Duplicate Address Test; DAT).
– Чтобы сообщить другим станциям, что он работоспособен, активный монитор периодически посылает в кольцо кадр Существует активный монитор (Active Monitor Present; AMP).
– Кадр Существует резервный монитор (Standby Monitor Present; SMP) отправляется любой станцией, не являющейся активным монитором.
– Резервный монитор отправляет кадр Маркер заявки (Claim Token, СТ), когда подозревает, что активный монитор отказал, затем резервные мониторы договариваются между собой, какой из них станет новым активным монитором.
– Станция отправляет кадр Сигнал (Beacon, BCN) в случае возникновения серьезных сетевых проблем, таких как обрыв кабеля, обнаружение станции, передающей кадры без ожидания маркера, выход станции из строя. Определяя, какая станция отправляет кадр сигнала, диагностирующая программа (ее существование и функции не определяются стандартами Token Ring) может локализовать проблему. Каждая станция периодически передает кадры BCN до тех пор, пока не примет кадр BCN от своего предыдущего (NAUN) соседа. В результате в кольце только одна станция продолжает передавать кадры BCN - та, у которой имеются проблемы с предыдущим соседом. В сети Token Ring каждая станция знает MAC - адрес своего предыдущего соседа, поэтому Beacon-процедура приводит к выявлению адреса некорректно работающей станции.
– Кадр Очистка (Purge, PRG) используется новым активным монитором для того, чтобы перевести все станции в исходное состояние и очистить кольцо от всех ранее посланных кадров.
В стандарте 802.5 используются адреса той же структуры, что и в стандарте 802.3. Адреса назначения и источника могут иметь длину либо 2, либо б байт. Первый бит адреса назначения определяет групповой или индивидуальный адрес как для 2-байтовых, так и для 6-байтовых адресов. Второй бит в 6-байтовых адресах говорит о том, назначен адрес локально или глобально. Адрес, состоящий из всех единиц, является широковещательным.
Адрес источника имеет тот же размер и формат, что и адрес назначения. Однако признак группового адреса используется в нем особым способом. Так как адрес источника не может быть групповым, то наличие единицы в этом разряде говорит о том, что в кадре имеется специальное попе маршрутной информации (Routing Information Field, RIF). Эта информация требуется при работе мостов, связывающих несколько колец Token Ring в режиме маршрутизации от источника.
Попе данных INFO кадра может содержать данные одного из описанных управляющих кадров уровня MAC или пользовательские данные, предназначенные для (или получаемые от) протокола более высокого уровня, такого как IPX или NetBIOS, и упакованные в кадр уровня LLC. Это поле, как уже отмечалось, не имеет определенной стандартом максимальной длины, хотя существуют практические ограничения на его размер, основанные на временных соотношениях между временем удержания маркера и временем передачи кадра. Для скорости 4 Мбит/с он равен около 5000 байт, а при скорости 16 Мбит/с - около 16 Кбайт. Минимальный размер поля данных кадра не определен, то есть может быть равен 0.
Поле Контропьная сумма FCS используется для обнаружения ошибок и состоит из четырех байтов остатка циклически избыточной контрольной суммы, вычисляемой по алгоритму CRC-32, осуществляющему циклическое суммирование по модулю 32.
Конечный ограничитель ED аналогичен одноименному полю маркера.
Поле Статус кадра FS имеет длину 1 байт и содержит 4 резервных бита и два подполя: бит распознавания адреса А и бит копирования кадра С. Его вид - АСххАСхх. Так как это поле не сопровождается вычисляемой суммой CRC, то используемые биты дублируются в байте. Когда кадр создается, передающая станция устанавливает бит распознавания адреса в 0; получающая станция устанавливает бит в 1, чтобы сообщить, что она опознала адрес получателя. Бит копирования кадра также вначале установлен в 0, но устанавливается в 1 получающей станцией (станцией назначения), когда она копирует содержимое кадра в собственную память (другими словами, когда она реально получает данные). Данные копируются (и бит устанавливается), если только кадр получен без ошибок. Если кадр возвращается с обоими установленными битами, исходная станция знает, что произошло успешное получение. Если бит распознавания адреса не установлен во время получения кадра, это означает, что станция назначения больше не присутствует в сети (возможно, вследствие неполадок). Возможна другая ситуация, когда адрес получателя опознается, но бит копирования кадра не установлен. Это говорит исходной станции, что кадр был искажен во время передачи (бит обнаружения ошибки в конечном ограничителе также будет установлен). Если оба бита опознавания адреса и копирования кадра установлены, и бит обнаружения ошибки также установлен, то исходная станция знает, что ошибка случилась после того, как этот кадр был корректно получен.
