Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ответы на вопросы Ульшиной вариант 4.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
1.4 Mб
Скачать

2) Фракционный состав, способы определения. Зависимость выхода фракции от температуры кипения нефтепродукта

Фракционным составом обычно называют зависимость количества выкипающего продукта от повышения температуры кипения.

Для индивидуальных веществ с определенной температурой кипения такой зависимости нет, так как вещество начинает кипеть и полностью выкипает при одной и той же температуре, называемой температурой кипения.

В основе всех методов определения фракционного состава нефти лежит дистилляция - тепловой процесс разделения сложной смеси углеводородов нефти на отдельные фракции с различными температурными интервалами кипения путем испарения нефти с последующей дробной конденсацией образовавшихся паров [4].

В процессе дистилляции фиксируют температуру паров t термометром 2 и объем жидкости V в приемнике 5 в следующие моменты: в момент падения первой капли в приемник (температура начала кипения - /нк), когда V- 0; когда объем жидкости в приемнике составляет 10 мл, 20 мл, 30 мл и т.

до fyb когда температура по термометру достигнет максимума (после *9о) и начнет снижаться - температура конца кипения (*кк).

Уточненная методика пересчета температур кипения нефтяных фракций//Химия и технология топлив и масел.

Методы определения фракционного состава нефтей в области высоких температур кипения//Сб.

кривая как бы смещается вверх на некотору* величину по температурам кипения.

Изучение этого явления [40] позволило заключить, что он связано с погрешностью пересчета температур по номограмм UOP: номограмма построена для индивидуальных углеводородов, при кипении нефти выкипает одновременно их сложная смеа Был предложен график поправок к номограмме UOP [4].

Например, от начала кипения до 80 °С отбирают и взвешивают первую фракцию, затем от 80 до 100 "С - вторую, от 100 до 120 °С - третью, и т.

Обычно это наблюдается при температуре кипения фракции (приведенной к нормальному давлению) - около 480-500 °С.

Полученные значения температур кипения отбираемых фракций и их выходов [в % (мае.

) от загрузки куба] представляют в виде таблицы или кривой и называют фракционным составом по НТК (истинным температурам кипения).

наибольшую четкость разделения углеводородов при испарении и соответственно наименьшую температуру начала кипения и наибольшую - конца кипения.

Это деление можно осуществлять тремя способами: по экспериментальным точкам отбора фракций при ректификации; по температурным пределам кипения фракций, обусловленным заранее (если они не совпадают с экспериментальными); по выходу фракций, если он чем-то обусловлен, и температурные пределы кипения фракций получаются в этом случае как функция.

Для каждого условного компонента определяют среднюю температуру кипения (например, как среднеарифметическую температур начала и конца кипения такого компонента по кривой ИТК), и эта температура служит в дальнейшем базовым физическим параметром во всех технологических расчетах, где используется фракционный состав.

Для этого составляют эталонную смесь из углеводородов с известными температурами кипения, охватывающими примерно интервал кипения смесей, которые требуется анализировать.

, /9 от нулевой оси, соответствующие времени удерживания каждого углеводорода (1-9) в колонке хроматографа, и строят калибровочный график // зависимости температур кипения углеводородов эталонной смеси от времени их удерживания.

Для этого в хроматограф вводят малую дозу анализируемой смеси (нефти или нефтепродукта) и получают ее хроматограмму ///, имеющую обычно сложный вид - множество пиков, соответствующих углеводородам с неизвестными температурами кипения.

К определению состава по ИТК имитированной дистилляцией: / - хроматограмма эталонной смеси; // - калибровочный график; /// - хроматограмма анализируемой смеси; IV - кривая ИТК; 1+9 - номера компонентов смеси с известными температурами кипения; 0 - момент ввода смеси в хроматограф; / и L - расстояния по хроматограмме; 5 - площади хроматограммы измеряют расстояние /о от нулевой линии, соответствующее площади хроматограммы.

Ее содержание меняется по экстремальной зависимости с минимумом в области температур кипения 100-150 °С.

4, из которой видно, что при почти одинаковых с НПУ температурах кипения они имеют почти на 100 °С ниже температуры застывания.

В основном все они представлены алкилпроизводными изомерами и содержатся во фракциях нефти в соответствии с их температурами кипения.

По интервалу кипения нефти сера распределяется неравномерно (рис.

21): в легких фракциях 80-100 °С ее содержится много, во фракциях 150-220 °С ее количество обычно минимально и далее к концу кипения существенно нарастает.

Резкой границы между фракцией нефти с температурой кипения 500-550 °С и фракцией, содержащей смолы и асфальтены, не существует, и поэтому их условно можно разделить на следующие компоненты: мальтены - смесь смол с масляными (парафинонафтено-выми) фракциями нефти.

2), дискретный ряд температур выкипания индивидуальных веществ, из которых состоит нефть, заменяется при определении фракционного состава нефти монотонной кривой зависимости "истинных" (усредненных) температур кипения, от выхода фракций нефти при ее кипении (состав нефти по НТК).

Представление кривой ИТК условными компонентами (о - экспериментальные точки; пунктир - деление на узкие фракции по шкале температур кипения; штрих-пунктир - то же по шкале выхода фракций) из точек выражает некую усредненную температуру кипения большой группы углеводородов, фиксируемую в момент отбора фракции.

Для технологических расчетов фракционный состав нефти должен быть представлен дискретным рядом компонентов с фиксированными (имитированными) температурами кипения, чтобы можно было по этим температурам определять их другие физические свойства.

Для узких фракций с интервалом кипения менее 20 °С без большой погрешности средняя температура кипения может быть вычислена как среднеарифметическая из начальной и конечной температур кипения данной узкой фракции.

Осмотическое давление в свою очередь находится в прямой зависимости от таких легко определяемых величин, как понижение точки замерзания растворов и повышение точки их кипения.

С расширением интервала кипения узкой фракции до 25 °С точность снижается и расхождения достигают 10 - 25%.

Если это давление равно давлению системы, то соответствующая температура, при которой это равенство имеет место, называется температурой кипения вещества.

В частности, если ДНП равно нормальному атмосферному давлению, то температуру, при которой это достигается, называют нормальной температурой кипения.

Для тяжелого нефтепродукта (кривые 4 и 5), несмотря на широкий интервал его кипения (270 - 410 °С), зависимость ДНП от pv заметна лишь до значений pv = 5 f 7.

Все расчетные методы определения ДНП в виде номограмм или уравнений в своей основе имеют закономерности, справедливые только для индивидуальных углеводородов, имеющих строго постоянную температуру кипения, и поэтому не учитывают параметра (3V, проявляющего свое влияние для многокомпонентных смесей, каковыми являются фракции нефти.

Применение этих методов для нефтепродуктов возможно только, если принять за температуру их кипения среднее значение (см.

К; А, В и С - коэффициенты, зависящие от физических свойств вещества (температуры кипения, химической структуры и др.

Для нахождения ДНП нефтяной фракции по этому графику при какой-либо температуре последнюю откладывают по оси ординат, проводят от этой точки горизонталь до линии, соответствующей средней температуре кипения (если она не совпадает с линией алкана, то интерполируют), от полученной таким путем точки опускают вертикаль до оси абсцисс и находят искомое ДНП.

Если требуется произвести пересчет рабочей температуры кипения какой-либо нефтяной фракции при пониженном давлении на нормальную температуру кипения при атмосферном давлении, то выполняют построения, показанные на рис.

Фирмой Universal Oil Products номограмма получена также для индивидуальных углеводородов различных групп, однако она широко применяется лишь в лабораторной практике для пересчета температур кипения с пониженных давлений на нормальное (она входит также в ГОСТ 10120-80 и ГОСТ 11011-85 на определение фракционного состава парафинов и нефти).

Опыт пользования этой номограммой для пересчета температур кипения (построения показаны стрелками) показал, что чем ниже давление, с которого ведется пересчет, тем больше погрешность в получаемой кривой ИТК [40], и она смещается по оси ординат на определенную величину (см.

8, б) к найденной по номограмме UOP нормальной температуре кипения •>6='о-Д'о.

К сожалению, широко пользоваться графиком поправок не удалось из-за того, что во всех странах стандартный состав (и температуры кипения товарных нефтепродуктов) определяют исходной номограммой UOP и ввод поправочного графика потребовал бы огромных по масштабам согласований и изменений нормативной документации во всех странах.

Сравнение значений ДНП, полученных расчетным путем по методам Кокса, UOP, Ашворта и Максвелла, с экспериментальными тензиметрическими значениями и справочными данными для углеводородов с такой же температурой кипения, как средняя температура кипения нефтяной фракции, приведена в [4, 44 и 56].

9; Ткр и Ркр определяют по среднеобъем-ной температуре кипения фракции, ее относительной плотности и уклону кривой фракционного состава.

Для углеводородов вязкость существенно зависит от их химической структуры: она повышается с увеличением молекулярной массы и температуры кипения.

Для индивидуальных углеводородов существует определенная количественная связь температуры вспышки и температуры кипения, выражаемая соотношением

С повышением температур кипения нефтяной фракции эта разница возрастает.

Для нефтяных фракций, кипящих не при строго определенной температуре, а выкипающих в некотором интервале температур, теплота парообразования становится понятием не совсем строгим: тепловая энергия затрачивается не только на испарение легких фракций, с которых начинается кипение, но и на разогрев до кипения последующих тяжелых фракций, испарение которых начинается при более высоких температурах.

79) где q" - энтальпия паров при данной температуре; qf^ - энтальпия жидкости при температуре кипения; L - теплота парообразования; q"u- количество тепла, затрачиваемое на перегрев паров от температуры кипения до данной температуры.

НДС могут существовать в природных условиях (нефть и газ в пластах) или образовываться в технологических процессах добычи нефти и газа (эмульсии "вода в нефти", "газ в нефти"), при их транспорте и переработке (выпадение кристаллов парафина, кипение, коксование и т.

Обратимые НДС - это системы, образующиеся в результате физических превращений (образование кристаллов парафина, пузырьков пара при кипении, ассоциатов смол и асфальтенов), которые путем внешних воздействий (изменением температуры, давления или добавкой растворителя) можно вернуть в первоначальное состояние растворов.

Для таких же прямогонных бензинов с концом кипения до 200 °С:

Под разделением нефти понимают выделение из нее отдельных фракций по температурам кипения, отдельных химических групп углеводородов, а также диспергированных компонентов.

5), позволявшим разделить нефть в непрерывном режиме сразу на 3-5 фракций с различными пределами кипения.

предусмотрено получение топлива РФС (расширенного фракционного состава), утяжеленного главным образом по концу кипения (см.

2) выкипают в большинстве случаев в пределах 40 - 350 °С, хотя в отдельных случаях они более тяжелые - температура начала кипения 103 и 210 "С, а в других - более легкие, температура конца кипения 200 - 230 °С.

Для него нормами установлены два основных показателя - температура начала кипения (не ниже 30 °С) и давление насыщенных паров, характеризующее наличие в нем легких углеводородов (не более 67 кПа летом и не более 93 кПа зимой).

Зависимость температур его кипения от давления показана на рис.

Зависимость температуры кипения от давления показана на рис.

Извлечение углеводородов из газа процессом НТС в значительной мере определяется составом исходного газа (например, выражаемым средней молярной температурой его кипения), что следует из данных табл.

фракция с пределами кипения 200 - 350 °С.

Если тот же процесс провести при более высокой температуре /2 > *ь то кривые НТК паровой и жидкой фаз (П2 и Жз) будут иметь иной вид: утяжеляется по концу кипения П2 и по началу кипения - Ж^.

2 это видно по тому, что температура конца кипения по ИТК паровой фазы выше, чем температура начала кипения по ИТК жидкой фазы.

Обычно создается остаточное давление порядка 1,5 - 10,0 кПа, в этом случае при температуре нагрева 380 - 400 °С может быть отогнано, например, от мазута до 60% паровой фазы с концом кипения ее до 550 -560 °С (в пересчете на атмосферное давление).

Назначение этой колонны - извлечь из нефти остатки растворенного в ней газа (если нефть не прошла стабилизацию) и легкую бензиновую фракцию с температурой конца кипения 85 °С (или 120 °С).

Подачей водяного пара в низ соответствующих стриппингов в них осуществляется отпарка легкокипящих фракций и регулируются точка начала кипения и температуры вспышки этих дистиллятов.

Изменение температуры конца кипения керосина или дизельного топлива производится за счет изменения количества флегмы, перетекающей из колонны в стриппинг (чем больше это количество, тем выше температура конца кипения).

Пределы его кипения 350 - 500 °С (в отдельных случаях 350 - 550 °С).

Гудрон (XVII) - остаточная часть нефти, выкипающая выше 500 °С, если отбирается вакуумный газойль с температурой конца кипения 550 °С.

Под термином четкость ректификации нефти в колоннах АВТ понимают величину температурного интервала между концом кипения легкокипящего дистиллята и началом кипения смежного ему тяжелого дистиллята.

А'д = 'кк ~ 'ню (8-5) где Д1б, Д/к, Д/д - четкость ректификации дистиллятов в бензиновой, керосиновой и дизельно-топливной секциях колонны; / 6, t*, ta, t" - температуры кипения бензина, керосина, дизельного топлива и мазута по началу кипения (нк) к концу кипения (кк).

Чем выше эта разделительная способность, тем ниже для одного и того же нефтепродукта будет фиксироваться температура начала кипения /нк и выше -конца кипения t^.

Дело в том, что по стандартному методу фиксация температур начала и конца кипения несколько условна и в значительной мере зависит от квалификации лаборанта и других субъективных факторов.

В-2 - одноколонная схема с доиспарителем гудрона, от которого доотгоняется тяжелый дистиллят (тВГ) с температурой конца кипения до 540 - 560 °С.