- •Билет №1
- •1. Классификация и назначение ферросплавов. Общие требования к качеству ферросплавов. Способы получения ферросплавов.
- •2. Электротермия чугуна.
- •Билет №2
- •1. Свойства кремния и углерода. Теоретические основы восстановления кремния углеродом. Требования к качеству углеродистых восстановителей.
- •2. Алюмотермические процессы получения металлического хрома и феррохрома.
- •Билет №3
- •1. Электротермия кристаллического кремния.
- •2. Технология получения азотированного феррохрома.
- •Билет №4
- •1. Электротермия карбида кремния.
- •2. Руды и концентраты вольфрама. Электротермия ферровольфрама.
- •Билет №5
- •1. Сортамент ферросилиция. Технология выплавки и разливки ферросилиция.
- •2. Алюмотермия ферровольфрама и лигатур.
- •Билет №6
- •1. Электротермия карбида кальция.
- •2. Руды и концентраты молибдена. Окислительный обжиг сульфидных молибденовых концентратов.
- •Билет №7
- •1. Электротермия силикокальция.
- •2. Технология получения ферромолибдена.
- •Билет №8
- •1. Минералы, руды и концентраты рзм. Технология получения ферросплавов с рзм.
- •2. Ванадиевые руды и способы извлечения ванадия из руд.
- •Билет №9
- •1. Области применения марганца и его сплавов. Характеристики марганцевых руд и концентратов.
- •2. Металлотермия феррованадия.
- •Билет №10
- •1. Дефосфорация марганцевых концентратов. Технология окускования марганцевых концентратов.
- •2. Руды и концентраты титана. Подготовка титановых концентратов к плавке.
- •Билет №11
- •1. Электротермия высокоуглеродистого ферромарганца.
- •2. Алюмотермия ферротитана.
- •Билет №12
- •1. Электротермия силикомарганца.
- •2. Технология получения металлического титана.
- •Билет №13
- •1. Электротермия среднеуглеродистого ферромарганца и металлического марганца.
- •2. Руды ниобия и тантала. Алюмотермия феррониобия.
- •Билет №14
- •1. Технология получения азотированного марганца и силикомарганца.
- •2. Руды и концентраты циркония. Алюмотермия ферросиликоциркония и ферроалюмоциркония.
- •Билет №15
- •1. Области применения хрома и его сплавов. Месторождения хромовых руд.
- •2. Руды и концентраты бора. Алюмотермия ферробора и лигатур бора.
- •Билет №16
- •1. Электротермия высокоуглеродистого феррохрома.
- •2. Электротермия карбида бора и нитрида бора.
- •Билет №17
- •1. Электротермия ферросиликохрома.
- •2. Никельсодержащие руды. Комплексная технология получения ферроникеля.
- •Билет №18
- •1. Электротермия низкоуглеродистого феррохрома.
- •2. Полиметаллические руды кобальта. Комплексная технология получения кобальта.
- •Билет №19
- •1. Вакуумные процессы рафинирования феррохрома.
- •2. Руды фосфора. Процессы подготовки фосфоритов к электроплавке.
- •Билет №20
- •1. Классификация ферросплавных процессов по виду применяемых восстановителей.
- •2. Электротермия феррофосфора. Электропечи для восстановления фосфора.
- •Билет №21
- •1. Кислородно-конверторный и силикотермические процессы получения среднеуглеродистого феррохрома.
- •2. Минералы руды алюминия. Технология производства силикоалюминия.
2. Алюмотермия ферротитана.
Технология получения ферротитана предусматривает восстановление титана из его оксидов алюминием. При восстановлении титана из диоксида титана алюминием необходимое тепло выделяется в результате восстановления железа и титана из их оксидов, имеющихся в ильменитовых концентратах. Считается, что для успешного протекания внепечного процесса необходимо иметь отношение Fe2O3/TiO2=1. В уральских ильменитах это отношение даже несколько больше. Часть дополнительного тепла вводится в результате подогрева шихты до 560-720 К. Выплавляют ферротитан в разборном чугунном горне, состоящем из разъемных половин или нескольких секций. Процесс ведут с нижним запалом, для чего перед началом плавки на подину горна насыпают -200 кг шихты, сверху нее - запальную смесь (селитра и магниевая стружка). Запальную смесь поджигают специальным электрическим запальником или магниевой стружкой. Как только экзотермические процессы становятся интенсивными, в горн при помощи шнека подают небольшими порциями подготовленную шихту из бункеров.
В случае плавки с верхним запалом всю подготовленную и перемешанную шихту загружают в плавильный горн и при помощи запальной смеси поджигают сверху; процесс плавки идет сверху вниз. После окончания плавки объем жидких продуктов в горне занимает примерно 1/3 горна. Используемый объем горна в 3 раза меньше, чем при варианте с нижним запалом, когда шихта постепенно плавится и продукты плавки могут заполнить весь объем горна. При работе с верхним запалом достигается большая скорость плавки, что обусловливается нагревом нижних слоев шихты опускающимися жидкими продуктами плавки. Вынос шихты из горна в процессе плавки меньший, чем при нижнем запале. Недостатком работы с верхним запалом является невозможность регулирования скорости проплавления шихты, что иногда приводит к очень бурному ходу процесса, сопровождающемуся выбросами. Способ нижнего запала эффективнее, поэтому применяется в большинстве внепечных процессов. Более высокие технико-экономические показатели при выплавке ферротитана возможны в результате электроподогрева шлака. Значительный эффект достигается при внепечной плавке с выпуском металла и шлака. Это дает возможность ведения плавки в нагретом горне при многократном его использовании.
Выплавка ферротитана внепечным алюминотермическим способом возможна благодаря теплу, выделяющемуся при восстановлении оксидов титана, которое дополняется теплом химических реакций восстановления железа, что оказывается достаточным для протекания процесса.
Билет №12
1. Электротермия силикомарганца.
Передельный силикомарганец получают в рудно-термических печах путем совместного восстановления марганца и кремния из шихты, состоящей из передельного малофосфористого марганцевого шлака, кварцита и коксика. Силикомарганец выплавляют в печах мощностью 5 МВА непрерывным процессом с периодическим выпуском сплава и шлака. Нормальный ход печи характеризуется устойчивой посадкой электродов в шихте и равномерным выпуском металла и шлака из печи. Для получения силикомарганца с низким содержанием железа используют графитированные электроды диаметром 450 мм. В сплав переходит 83,7% Мn и 60% Si. Содержание углерода в сплаве составляет 0,08-0,1% при концентрации кремния 27-29%.
