
- •Лекция № 1. Введение. Основное содержание дисциплины. Понятия о технологии промывки скважин.
- •Лекция № 2. Функции бр. Требования к бр.
- •Лекция № 3. Бр как дисперсные системы (дс). Их свойства, классификации.
- •Классификация по агрегатному состоянию
- •Классификация по межфазному взаимодействию
- •Лекция № 4. Применение воды, воздуха и газов в качестве бр.
- •Лекция № 5. Растворы на водной основе. Типы глин для приготовления глинистых растворов.
- •Лекция № 6. Основные технологические параметры бр.
- •Лекция № 7. Физико-химические процессы в глинистых растворах. Свойства глинистых растворов.
- •Лекция № 8. Разновидности гр и условия их применения (ингибированные, солевые, полимерные и др.)
- •Нестабилизированные глинистые суспензии и суспензии из выбуренных пород.
- •Безглинистые солестойкие растворы (бск)
- •Лигносульфонатные растворы.
- •Полимерные недиспергирующие растворы.
- •Ингибированные растворы.
- •1. Алюминатные растворы
- •2. Известковые растворы с высоким рН
- •3. Кальциевые растворы
- •4. Известковый раствор с низким рН
- •5. Хлоркальциевые растворы
- •6. Калиевые растворы
- •Лекция № 9. Эмульсионные буровые растворы. Растворы на углеводородной (нефтяной) основе
- •Известково – битумный раствор (ибр).
- •Лекция № 10Химические реагенты, применяемые при приготовлении буровых растворов.
- •Реагенты «m-I drilling swako» (сша)
- •Лекция № 11. Обработка буровых растворов.
- •Лекция № 13. Циркуляционная система буровой установки. Очистка бр.
- •Лекция № 14. Способы и оборудование для очистки и дегазации бр.
- •Механическая очистка
- •Оборудование для очистки с помощью центробежных сил.
- •Дегазация бурового раствора.
- •Лекция № 15. Выбор типа бр, его состава и свойств
- •Лекция № 16. Общая характеристика применения тр. Классификация тм.
- •Классификация тм и тр
- •Лекция № 17. Базовые тампонажные материалы (тампонажный портландцемент, активные и инертные добавки) Тампонажный портландцемент (тц)
- •Добавки, вводимые при помоле цемента.
- •Инертные минеральные добавки
- •Активные минеральные добавки
- •Лекция № 18. Разновидности пц. Физико-химические процессы твердения тр. Гидратация и гидролиз.
- •Физико-химические процессы твердения тр. Гидратация и гидролиз.
- •Лекции № 19 - 20. Основные свойства тампонажного порошка, раствора и камня Свойства тампонажного порошка.
- •Свойства цементного раствора (цр)
- •Свойства цементного камня
- •Лекции № 21- 22. Коррозионностойкие, термостойкие, расширяющиеся, на основе силикатных материалов цементы.
- •Пуццолановые цементы
- •Глиноземистый и гипсоглиноземистый цементы
- •Карбонатный цемент
- •Песчанистый портландцемент
- •Шлакопортландцемент
- •Модифицирование тампонажных цементов с целью повышения их коррозионной стойкости.
- •Термостойкие тц
- •Расширяющиеся тц.
- •Тм на основе силикатов щелочных металлов.
- •Лекции № 23 – 24. Тм на основе вяжущих веществ, металлургические шлаки, магнезиальный цемент, облегченные, утяжеленные тр. Гипсовые вяжущие вещества.
- •Металлургические шлаки.
- •Магнезиальный цемент.
- •Модифицированные тм.
- •Облегченные тц и тр.
- •Утяжелители. Утяжеленные тц и тр.
- •Карбонатные утяжелители
- •Баритовые утяжелители
- •Железистые утяжелители
- •Свинцовые утяжелители
- •Утяжеленные тц.
- •Лекции № 25 – 26. Тр, затворенные на растворах солей и другие виды тр. Тр, затворенные на концентрированных растворах солей.
- •Другие виды тр. Нефтецементные растворы
- •Полимерные растворы
- •Тампонажные пасты.
- •Лекция № 27. Тампонирующие смеси для борьбы с поглощениями при бурении.
- •Быстросхватывающиеся смеси.
- •Лекция № 28. Контроль качества тм.
- •Лекция № 29. Технология приготовления тампонажных составов.
- •Лекция № 30. Охрана окружающей среды и мероприятия по тб при промывке и тампонировании скважин.
Лекция № 6. Основные технологические параметры бр.
Технологические свойства БР являются показателем пригодности для конкретных условий бурения. Рассмотрим эти свойства. К ним относятся: структурно – механические, реологические, фильтрационные и коркообразующие.
Плотность. Это масса единицы объема БР. Измеряется плотность в кг/м3 или г/см3. Зная плотность раствора, можно определить давление, которое оказывает БР на пласты, залегающие на различных глубинах. Это давление (в мПа) называется гидростатическим и в любой точке скважины определяется из уравнения:
Рг = ρ Н / 100,
где ρ – плотность БР, г/см3 ; Н – расстояние от уровня БР в скважине до рассматриваемой точки про вертикали, м; 100 – расчетный коэффициент для перевода в мПа.
Следовательно, зная плотность, можно регулировать давление БР на пласт. При измерении плотности следует иметь в виду, что выходящий из скважины буровой раствор может содержать газ, поэтому плотность такого раствора считается кажущейся. Истинная плотность устанавливается на основании измерения кажущейся и содержания газа. Плотность определяют взвешиванием известного объема раствора на рычажных весах (плотномерами ВРП – 1), пикнометрами или ареометрами АГ-3ПП, АБР – 2 и др.
Условная вязкость. Вязкость жидкостей характеризуется внутренним трением между отдельными слоями жидкости при ее движении. Истинные растворы и вообще жидкости, не имеющие структуры, обладают истинной вязкостью, которая не зависит от механического воздействия на жидкость. При добавке глины в буровой раствор не образуется истинного раствора. Она распадается (диспергируется) на мельчайшие частицы, покрывающиеся пленкой, которая предупреждает эти частицы от слипания и обеспечивает, таким образом их подвижность и вместе с этим подвижность всего раствора. В растворе, находящемся в покое, глинистые частицы под действием молекулярных сил, соединяются друг с другом концами, где защитные пленки тоньше, и образуют сетчатую структуру, что приводит к загустеванию раствора вплоть до потери текучести. Чтобы заставить такой раствор снова течь и снизить его вязкость, необходимо разрушить образовавшуюся в нем структуру.
Таким образом, буровые растворы обладают структурной вязкостью, которая в отличие от истинной, зависит от механического воздействия на раствор. Измерение структурной вязкости очень сложно, поэтому в полевых условиях обычно измеряется условная вязкость.
Условная вязкость Т в с характеризует подвижность бурового раствора и измеряется по времени истечения 500мл бурового раствора из стандартной воронки ВП-5, заполненной 700 мл раствора.
Водоотдача или показатель фильтрации. Водоотдачей бурового раствора называется способность раствора при повышенном давлении отфильтровывать воду.
При бурении в поры обнаженной породы проникает буровой раствор. Частички его твердой фазы оседают на стенках пор и уменьшают их, образуя своеобразный фильтр, через отверстия которого может пройти только жидкая фаза раствора (чаще всего вода). Вода отфильтровывается в пласт под влиянием перепада давления, равного разнице между давлением столба бурового раствора и пластовым. На стенках скважины образуется фильтрационная глинистая корка. По мере ее утолщения сопротивление прохождению через нее жидкой фазы возрастает, и скорость фильтрации снижается. Величина водоотдачи определяется свойствами фильтрационной корки. Скорость образования и толщина различны и зависят от ряда факторов, в том числе и от качества БР. Высокодиспергированные растворы образуют тонкую, но плотную корку, а грубодисперсные низкокачественные нестабильные растворы образуют толстую, рыхлую и неплотную корку.
Фильтрационная корка характеризуется толщиной и липкостью. Толстая рыхлая корка уменьшает диаметр скважины, приводит при выполнении СПО к образованию пробок и затяжкам бурильного инструмента, к росту перепадов давления на стенки скважины. Липкая корка, даже тонкая, плотная может привести к прихвату бурового инструмента, особенно при бурении глубоких наклонных скважин. При нормальных условиях бурения толщина фильтрационной корки не должна превышать 2 мм.
Водоотдача В при нормальной температуре ( + 200 С) измеряется количеством жидкости в мл, отфильтровавшейся из бурового раствора за 30 мин под действием перепада давления в 1 кгс/см2 при температуре 200 С с площади фильтра 44 см2. Для измерения В используют один из приборов: ВМ-6, ВГ-1М, ГрозНИИ.
Предельное статическое напряжение сдвига. В буровом растворе, находящемся в покое, образуется сетчатая структура, что приводит к потере его подвижности. Чтобы заставить такой раствор течь, необходимо разрушить эту структуру. Сила, которую надо приложить для этого, определяет статическое напряжение сдвига. Величина его выражается в миллиграммах силы, действующей на 1 см2 поверхности раствора (мг с/см2).
СНС характеризует прочность структуры и определяет способность БР удерживать во взвешенном состоянии частицы разрушенной породы и пузырьки газа (воздуха), проникать в трещины и поры ГП и удерживаться там под воздействием нагрузок. Повышать СНС следует в случае, если интенсивность разрушения ГП при бурении достаточно велика и продукты разрушения имеют значительные размеры и плотность, если необходимо утяжелить БР специальными утяжелителями, а также в условиях возможных поглощений БР в трещиноватых или пористых породах. При этом необходимо иметь в виду, что повышенное СНС ухудшает условия дегазации и очистки БР от продуктов разрушения ГПА и посторонних включений.
Предельное статическое напряжение сдвига, измеряемое на приборе СНС – 2, определяется величиной усилия, которое возникает на погруженном в стакан с буровым раствором подвесном цилиндре при вращении стакана с определенной скоростью.
Водородный показатель. Является важнейшим диагностирующим признаком состояния БР, обуславливающим методы химической обработки.
рН = – lg [H+]
В нейтральных растворах рН = 7, в кислых рН < 7 и уменьшается с ростом кислотности. В щелочных растворах рН > 7 и повышается с увеличением щелочности. Концентрация водородных ионов рН - важный показатель, определяющий характер физико-химических процессов в промывочной жидкости и необходимость обработки ее реагентами. В каждой дисперсной системе при определенных значениях концентрации водородных ионов наступает максимум и минимум стабильности.
Для различных промывочных жидкостей существует своя оптимальная концентрация водородных ионов, при которой они наиболее полно удовлетворяют требованиям технологии бурения в конкретных геолого-технических условиях. Контроль за величиной рН позволяет определить причины изменения свойств промывочной жидкости в процессе бурения и принять меры по восстановлению ее качества. Концентрацию водородных ионов промывочных жидкостей измеряют колориметрическим и электрометрическим способами, а также с помощью универсальной индикаторной бумаги по изменению цвета по сравнению с эталонами.
Содержание песка и абразивных частиц. Оно характеризует степень загрязненности БР грубодисперсными фракциями различного минералогического состава. Ими принято считать все мелкие обломки ГП, в том числе комочки недиспергированной глины. Чрезмерное содержание песка приводит к абразивному износу гидравлического оборудования и бурового снаряда, уменьшению механической скорости бурения. Для БР нормальным считается содержание песка до 4 %. Определяют его с помощью прибора – отстойника ОМ – 2.
Стабильность и суточный отстой. Эти параметры используются в качестве технологических показателей устойчивости БР как дисперсной системы.
Показатель стабильности измеряется с помощью прибора ЦС – 2, представляющего собой металлический цилиндр объемом 800 см3 со сливным отверстием в середине. При измерении отверстие перекрывают резиновой пробкой, цилиндр заливают испытываемым раствором, закрывают стеклом и оставляют в покое на 24 ч. По истечении этого срока отверстие открывают и верхнюю половину раствора сливают в отдельную емкость. Ареометром определяют плотность верхней и нижней частей раствора. За меру стабильности принимают разность плотностей раствора в нижней и верхней частях цилиндра. Чем меньше значение С, тем стабильность раствора выше.
Суточный отстой измеряют с помощью стеклянного мерного цилиндра объемом 100 см3. Испытываемую жидкость осторожно наливают в мерный цилиндр до отметки 100 см3, закрывают стеклом и оставляют в покое на 24 ч, после чего визуально определяют величину слоя прозрачной воды, выделившейся в верхней части цилиндра. Отстой выражают в процентах выделившейся жидкости от объема пробы. Чем меньше суточный отстой, тем устойчивее, стабильнее промывочная жидкость.